留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿生爪刺对抓式履带爬壁机器人设计与分析

刘彦伟 王李梦 刘三娃 李鹏阳 梅涛 李言

刘彦伟, 王李梦, 刘三娃, 李鹏阳, 梅涛, 李言. 仿生爪刺对抓式履带爬壁机器人设计与分析[J]. 机械科学与技术, 2019, 38(11): 1689-1694. doi: 10.13433/j.cnki.1003-8728.20190220
引用本文: 刘彦伟, 王李梦, 刘三娃, 李鹏阳, 梅涛, 李言. 仿生爪刺对抓式履带爬壁机器人设计与分析[J]. 机械科学与技术, 2019, 38(11): 1689-1694. doi: 10.13433/j.cnki.1003-8728.20190220
Liu Yanwei, Wang Limeng, Liu Sanwa, Li Pengyang, Mei Tao, Li Yan. Design and Analysis of a Bio-inspired Tracked Wall-climbing Robot with Spiny Grippers[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(11): 1689-1694. doi: 10.13433/j.cnki.1003-8728.20190220
Citation: Liu Yanwei, Wang Limeng, Liu Sanwa, Li Pengyang, Mei Tao, Li Yan. Design and Analysis of a Bio-inspired Tracked Wall-climbing Robot with Spiny Grippers[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(11): 1689-1694. doi: 10.13433/j.cnki.1003-8728.20190220

仿生爪刺对抓式履带爬壁机器人设计与分析

doi: 10.13433/j.cnki.1003-8728.20190220
基金项目: 

国家自然科学基金项目 51805431

陕西省自然科学基础研究计划项目 2018JQ5062

中国博士后科学基金项目 2018M643695

详细信息
    作者简介:

    刘彦伟(1987-), 讲师, 博士, 研究方向为仿生机器人技术, liuyw@xaut.edu.cn

  • 中图分类号: TP242

Design and Analysis of a Bio-inspired Tracked Wall-climbing Robot with Spiny Grippers

  • 摘要: 针对粗糙壁面和天花板上爬行的应用需求,基于毛虫腹足趾钩阵列对抓机理,提出了一种仿生爪刺对抓式履带爬壁机器人。该机器人履带由数十个仿生爪刺对抓足通过链条结构连接构成,仿生爪刺对抓足与机器人本体构成凸轮机构,模仿毛虫爬行过程中腹足趾钩的抓附、脱附动作,能够实现在粗糙天花板和壁面上稳定爬行。建立了毛虫腹足趾钩阵列对抓机理模型,仿生设计了爪刺对抓式履带爬壁机器人,分析了机器人爬行过程中仿生爪刺对抓足的抓附、脱附动作,并在粗糙天花板和壁面上对机器人样机开展了爬行实验。
  • 图  1  烟草天蛾毛虫腹足趾钩阵列

    图  2  毛虫腹足对抓模型

    图  3  仿生爪刺对抓足结构图

    图  4  爪刺足与对抓足支架结构图

    图  5  爪刺足相向对抓动作序列

    图  6  爪刺足脱附动作序列

    图  7  烟草天蛾毛虫腹足趾钩外翻脱附动作序列

    图  8  机器人结构

    图  9  机器人履带结构

    图  10  凸轮机构驱动爪刺足抓附和脱附动作序列

    图  11  仿生爪刺对抓式履带爬壁机器人样机

    图  12  仿生爪刺对抓足负载能力测试

    图  13  接触力测试平台

    图  14  仿生爪刺对抓足接触力测试结果

    图  15  机器人在多种粗糙壁面上爬行实验

    图  16  机器人在粗糙砖面天花板上倒挂爬行

  • [1] Nansai S, Mohan R. A survey of wall climbing robots: Recent advances and challenges[J]. Robotics, 2016, 5(3):14 doi: 10.3390/robotics5030014
    [2] Asbeck A T, Kim S, Cutkosky M R, et al. Scaling hard vertical surfaces with compliant microspine arrays[J]. The International Journal of Robotics Research, 2006, 25(12):1165-1179 doi: 10.1177/0278364906072511
    [3] Spenko M J, Haynes G C, Saunders J A, et al. Biologically inspired climbing with a hexapedal robot[J]. Journal of Field Robotics, 2008, 25(4-5):223-242 doi: 10.1002/rob.20238
    [4] Haynes G C, Khripin A, Lynch G, et al. Rapid pole climbing with a quadrupedal robot[C]//Proceedings of 2009 IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009: 2767-2772
    [5] 陈东良, 张群, 王立权, 等.一种粗糙壁面爬行机器人的设计与实现[J].哈尔滨工程大学学报, 2012, 33(2):209-213 doi: 10.3969/j.issn.1006-7043.201012057

    Chen D L, Zhang Q, Wang L Q, et al. Design and realization of a kind of rough wall climbing robot[J]. Journal of Harbin Engineering University, 2012, 33(2):209-213(in Chinese) doi: 10.3969/j.issn.1006-7043.201012057
    [6] Xu F Y, Wang X S, Jiang G P. Design and analysis of a wall-climbing robot based on a mechanism utilizing hook-like claws[J]. International Journal of Advanced Robotic Systems, 2012, 9(6):261 doi: 10.5772/53895
    [7] Ji A H, Zhao Z H, Manoonpong P, et al. A bio-inspired climbing robot with flexible pads and claws[J]. Journal of Bionic Engineering, 2018, 15(2):368-378 doi: 10.1007/s42235-018-0028-6
    [8] Carpenter K, Wiltsie N, Parness A. Rotary microspine rough surface mobility[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(5):2378-2390 doi: 10.1109/TMECH.2015.2511012
    [9] Liu Y W, Sun S M, Wu X, et al. A wheeled wall-climbing robot with bio-inspired spine mechanisms[J]. Journal of Bionic Engineering, 2015, 12(1):17-28 doi: 10.1016/S1672-6529(14)60096-2
    [10] Parness A, Abcouwer N, Fuller C, et al. LEMUR 3: a limbed climbing robot for extreme terrain mobility in space[C]//Proceedings of 2017 IEEE International Conference on Robotics and Automation. Singapore: IEEE, 2017: 5467-5473
    [11] Nagaoka K, Minote H, Maruya K, et al. Passive spine gripper for free-climbing robot in extreme terrain[J]. IEEE Robotics and Automation Letters, 2018, 3(3):1765-1770 doi: 10.1109/LRA.2018.2794517
    [12] Xu F Y, Wang B, Shen J J, et al. Design and realization of the claw gripper system of a climbing robot[J]. Journal of Intelligent & Robotic Systems, 2018, 89(3-4):301-317 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dc5610225bae841af5043a364ad11cef
    [13] 江南.对抓钩爪式六足爬壁机器人[D].南京: 南京航空航天大学, 2018

    Jiang N. A claws-paired hexapod climbing robot[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018(in Chinese)
    [14] Liu G W, Liu Y W, Wang X J, et al. Design and experiment of a bioinspired wall-climbing robot using spiny grippers[C]//Proceedings of 2016 IEEE International Conference on Mechatronics and Automation. Harbin, China: IEEE, 2016: 665-670
    [15] Mukherjee R, Vaughn S, Trimmer B A. The neuromechanics of proleg grip release[J]. Journal of Experimental Biology, 2018, 221(13):jeb173856 doi: 10.1242/jeb.173856
  • 加载中
图(16)
计量
  • 文章访问数:  268
  • HTML全文浏览量:  142
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-05
  • 刊出日期:  2019-11-05

目录

    /

    返回文章
    返回