留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机械臂固定时间观测器和自适应滑膜控制方法的设计

肖仁 吴定会

肖仁, 吴定会. 机械臂固定时间观测器和自适应滑膜控制方法的设计[J]. 机械科学与技术, 2020, 39(5): 714-720. doi: 10.13433/j.cnki.1003-8728.20190212
引用本文: 肖仁, 吴定会. 机械臂固定时间观测器和自适应滑膜控制方法的设计[J]. 机械科学与技术, 2020, 39(5): 714-720. doi: 10.13433/j.cnki.1003-8728.20190212
Xiao Ren, Wu Dinghui. Design of Fixed Time Observer and Adaptive Synovial Control Method for Manipulator[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(5): 714-720. doi: 10.13433/j.cnki.1003-8728.20190212
Citation: Xiao Ren, Wu Dinghui. Design of Fixed Time Observer and Adaptive Synovial Control Method for Manipulator[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(5): 714-720. doi: 10.13433/j.cnki.1003-8728.20190212

机械臂固定时间观测器和自适应滑膜控制方法的设计

doi: 10.13433/j.cnki.1003-8728.20190212
基金项目: 

江苏省研究生科研实践创新计划项目 SJCX18_0643

国家自然科学基金项目 61572237

详细信息
    作者简介:

    肖仁(1995-), 硕士研究生, 研究方向为机器人控制及嵌入式, xiaomeixue@stu.jiangnan.edu.cn

    通讯作者:

    吴定会(1970-), 教授, 博士, wdh123@jiangnan.edu.cn

  • 中图分类号: TP241.2

Design of Fixed Time Observer and Adaptive Synovial Control Method for Manipulator

  • 摘要: 在机械臂轨迹跟踪控制过程中,当利用观测器对模型参数不确定性和外部未知动态扰动进行估计时,估计时间容易受扰动初值的影响,为此基于固定时间扰动观测器设计了一种自适应滑模轨迹跟踪控制方法。利用固定时间观测器的特性,在固定时间内获得机械臂内部模型误差和外部不确定扰动的估计,对扰动估计做出补偿,通过滑模控制策略实现机械臂的轨迹跟踪控制。针对滑模控制伴随抖震的特性,论文对滑模控制器的趋近律进行了抑制抖震的改进设计。通过仿真实验证明:基于固定时间扰动观测器的滑膜控制方法能够在固定时间内准确获取扰动的估计值,能够控制机械臂以高精度跟踪给定轨迹;通过与基于高阶扰动观测器的滑模控制方法进行仿真对比,验证了该方法在消除不确定扰动的基础上,能够有效地抑制系统抖振,并且跟踪误差能够在短时间内以指数速率完成收敛。
  • 图  1  控制系统结构图

    图  2  固定时间观测器扰动跟踪效果

    图  3  固定时间观测器扰动估计误差收敛效果

    图  4  HODO-SMC控制力矩效果

    图  5  HODO-ASMC控制力矩效果

    图  6  FTDO-ASMC控制力矩效果

    图  7  FTDO-ASMC关节角度轨迹

    图  8  FTDO-ASMC关节角度轨迹误差收敛效果

  • [1] Li C S, Gu X Y, Xiao X, et al. A robotic system with multichannel flexible parallel manipulators for single port access surgery[J]. IEEE Transactions on Industrial Informatics, 2019, 15(3):1678-1687 doi: 10.1109/TII.2018.2856108
    [2] Ramon Soria P, Arrue B C, Ollero A. A 3D-printable docking system for aerial robots:controlling aerial robotic manipulators in outdoor industrial applications[J]. IEEE Robotics & Automation Magazine, 2019, 26(1):44-53 http://cn.bing.com/academic/profile?id=70c45fea1bac0ac5cc59435a4945e91c&encoded=0&v=paper_preview&mkt=zh-cn
    [3] Garriz C, Domingo R. Development of trajectories through the kalman algorithm and application to an industrial robot in the automotive industry[J]. IEEE Access, 2019, 7:23570-23578 doi: 10.1109/ACCESS.2019.2899370
    [4] Saidi B, Amairi M, Najar S, et al. Bode shaping-based design methods of a fractional order PID controller for uncertain systems[J]. Nonlinear Dynamics, 2015, 80(4):1817-1838 doi: 10.1007/s11071-014-1698-1
    [5] Pan Y P, Li X Yu H Y. Efficient PID tracking control of robotic manipulators driven by compliant actuators[J]. IEEE Transactions on Control Systems Technology, 2019, 27(2):915-922 doi: 10.1109/TCST.2017.2783339
    [6] Xiao B, Yin S. Exponential tracking control of robotic manipulators with uncertain dynamics and kinematics[J]. IEEE Transactions on Industrial Informatics, 2019, 15(2):689-698 doi: 10.1109/TII.2018.2809514
    [7] Zhang X G, Sun L Z, Zhao K, et al. Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques[J]. IEEE Transactions on Power Electronics, 2013, 28(3):1358-1365 doi: 10.1109/TPEL.2012.2206610
    [8] Jin N Z, Wang X D, Wu X G. Current sliding mode control with a load sliding mode observer for permanent magnet synchronous machines[J]. Journal of Power Electronics, 2014, 14(1):105-114 doi: 10.6113/JPE.2014.14.1.105
    [9] Zhang W C, Chen M. Tracking control of manipulator based on high-order disturbance observer[J]. IEEE Access, 2018, 6:26753-26764 doi: 10.1109/ACCESS.2018.2834978
    [10] Polyakov A, Fridman L. Stability notions and Lyapunov functions for sliding mode control systems[J]. Journal of the Franklin Institute, 2014, 351(4):1831-1865 doi: 10.1016/j.jfranklin.2014.01.002
    [11] Basin M, Panathula C B, Shtessel Y. Adaptive uniform finite-/fixed-time convergent second-order sliding-mode control[J]. International Journal of Control, 2016, 89(9):1777-1787 doi: 10.1080/00207179.2016.1184759
    [12] Basin M, Yu P, Shtessel Y. Finite-and fixed-time differentiators utilising HOSM techniques[J]. IET Control Theory & Applications, 2017, 11(8):1144-1152 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ce97406641b24fc2b53793313620ba0b
    [13] Lopez-Ramirez F, Polyakov A, Efimov D, et al. Finite-time and fixed-time observers design via implicit Lyapunov function[C]//Proceedings of 2016 European Control Conference Aalborg, Denmark: IEEE, 2016: 289-294
    [14] You M, Zong Q, Tian B, et al. Comprehensive design of uniform robust exact disturbance observer and fixed-time controller for reusable launch vehicles[J]. IET Control Theory & Applications, 2018, 12(5):638-648 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9c57278119857b4cf2c84a13f3414833
    [15] Yu X, Li P Zhang Y M. The design of fixed-time observer and finite-time fault-tolerant control for hypersonic gliding vehicles[J]. IEEE Transactions on Industrial Electronics, 2018, 65(5):4135-4144 doi: 10.1109/TIE.2017.2772192
    [16] 刘金琨.机器人控制系统的设计与MATLAB仿真:先进设计方法[M].北京:清华大学出版社, 2017

    Liu J K. Robot control system design and MATLAB simulation:the advanced design method[M]. Beijing:Tsinghua University Press, 2017(in Chinese)
    [17] 杨峰韦, 常柱, 吴荣, 等.一阶不确定系统的固定时间收敛扰动观测器[J].控制与决策, 2019, 34(5):917-926 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201905003

    Yang F, Wei C Z, Wu R et al. Fixed-time convergent disturbance observer for first-order uncertain system[J]. Control and Decision, 2019, 34(5):917-926(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/kzyjc201905003
  • 加载中
图(8)
计量
  • 文章访问数:  327
  • HTML全文浏览量:  614
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-09
  • 刊出日期:  2020-05-05

目录

    /

    返回文章
    返回