留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

均匀T网格样条曲面的局部细分算法

胡海涛 纪小刚 张溪溪 张建安 栾宇豪

胡海涛, 纪小刚, 张溪溪, 张建安, 栾宇豪. 均匀T网格样条曲面的局部细分算法[J]. 机械科学与技术, 2020, 39(5): 743-750. doi: 10.13433/j.cnki.1003-8728.20190201
引用本文: 胡海涛, 纪小刚, 张溪溪, 张建安, 栾宇豪. 均匀T网格样条曲面的局部细分算法[J]. 机械科学与技术, 2020, 39(5): 743-750. doi: 10.13433/j.cnki.1003-8728.20190201
Hu Haitao, Ji Xiaogang, Zhang Xixi, Zhang Jian'an, Luan Yuhao. Local Subdivision Algorithm for Uniform T-Grid Spline Surface[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(5): 743-750. doi: 10.13433/j.cnki.1003-8728.20190201
Citation: Hu Haitao, Ji Xiaogang, Zhang Xixi, Zhang Jian'an, Luan Yuhao. Local Subdivision Algorithm for Uniform T-Grid Spline Surface[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(5): 743-750. doi: 10.13433/j.cnki.1003-8728.20190201

均匀T网格样条曲面的局部细分算法

doi: 10.13433/j.cnki.1003-8728.20190201
基金项目: 

江苏省"六大人才高峰"项目 JXQC-006

国家自然科学基金项目 51105175

详细信息
    作者简介:

    胡海涛(1993-), 硕士研究生, 研究方向为机械CAD/CAM、逆向工程, huhaitao_2019@126.com

    通讯作者:

    纪小刚, 副教授, 硕士生导师, 博士, bhearts@126.com

  • 中图分类号: TP391.72

Local Subdivision Algorithm for Uniform T-Grid Spline Surface

  • 摘要: 为解决T样条曲面造型中控制点插入的规范与半规范问题,提出基于均匀T网格样条曲面的局部细分算法。首先根据T样条曲面定义,将B样条曲面转换成均匀T网格样条曲面,然后在均匀T网格样条曲面中进行局部均匀控制点插入。为满足曲面局部特征细分要求,采用递进控制点插入形式:拥有局部特征的网格先进行全行(或全列)均匀控制点插入,之后进行局部列(局部行)均匀控制点插入,在此基础上,可以再次进行均匀控制点插入,以达到对网格的嵌套细分。该算法对初始网格控制点的混合函数进行矩阵转换,得到最终T网格上控制点的混合函数,实现最终曲面构造。与T样条曲面的局部细分相比,该方法简化了任意控制点插入的复杂度,与B样条曲面的局部细分相比,该方法减少了多余控制点。
  • 图  1  T网格规范性与半规范性

    图  2  T样条曲面

    图  3  单控制点插入形式

    图  4  单网格不同控制点插入形式

    图  5  均匀T网格样条曲面

    图  6  新局部细分算法流程图

    图  7  新局部细分算法细分过程

    图  8  初始均匀网格T样条曲面

    图  9  单列3个控制点插入

    图  10  插入全行控制点T样条曲面

    图  11  插入局部列控制点T样条曲面

    图  12  再插入全行控制点T样条曲面

    图  13  再插入局部列控制点T样条曲面

    图  14  适合分析的T样条曲面

  • [1] Forsey D R, Bartels R H. Hierarchical B-spline refinement[J]. ACM SIGGRAPH Computer Graphics, 1988, 22(4):205-212 doi: 10.1145/378456.378512
    [2] Jiang W, Dolbow J E. Adaptive refinement of hierarchical B-spline finite elements with an efficient data transfer algorithm[J]. International Journal for Numerical Methods in Engineering, 2015, 102(3-4):233-256 doi: 10.1002/nme.4718
    [3] Engleitner N, Jüttler B. Patchwork B-spline refinement[J]. Computer-Aided Design, 2017, 90:168-179 doi: 10.1016/j.cad.2017.05.021
    [4] 何雪明, 孔丽娟, 何俊飞.基于自适应测量和实时重构的自由曲面特征产品的逆向研究[J].机械科学与技术, 2015, 34(1):99-102 doi: 10.13433/j.cnki.1003-8728.2015.0121

    He X M, Kong L J, He J F. Study on the reverse free-form feature of products based on the self-adaptive measurement and real-time reconstruction[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(1):99-102(in Chinese) doi: 10.13433/j.cnki.1003-8728.2015.0121
    [5] Bressan A. Some properties of LR-splines[J]. Computer Aided Geometric Design, 2013, 30(8):778-794 doi: 10.1016/j.cagd.2013.06.004
    [6] Johannessen K A, Kvamsdal T, Dokken T. Isogeometric analysis using LR B-splines[J]. Computer methods in Applied Mechanics and Engineering, 2014, 269:471-514 doi: 10.1016/j.cma.2013.09.014
    [7] Chen L, De Borst R. Locally refined T-splines[J]. International Journal for Numerical Methods in Engineering, 2018, 114(6):637-659 doi: 10.1002/nme.5759
    [8] Gu J M, Yu T T, Van Lich L, et al. Multi-inclusions modeling by adaptive XIGA based on LR B-splines and multiple level sets[J]. Finite Elements in Analysis and Design, 2018, 148:48-66 doi: 10.1016/j.finel.2018.05.003
    [9] Sederberg T W, Zheng J M, Bakenov A, et al. T-splines and T-NURCCs[J]. ACM Transactions on Graphics, 2003, 22(3):477 doi: 10.1145/882262.882295
    [10] Bressan A, Buffa A, Sangalli G. Characterization of analysis-suitable T-splines[J]. Computer Aided Geometric Design, 2015, 39(6):17-49 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1211.5669
    [11] Li X, Zhang J J. AS++T-splines:Linear independence and approximation[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 333:462-474 doi: 10.1016/j.cma.2018.01.041
    [12] Wang A Z, Zhao G, Li Y D. Linear independence of the blending functions of T-splines without multiple knots[J]. Expert Systems with Applications, 2014, 41(8):3634-3639 doi: 10.1016/j.eswa.2013.12.012
    [13] Li X, Zheng J M, Sederberg T W, et al. On linear independence of T-spline blending functions[J]. Computer Aided Geometric Design, 2012, 29(1):63-76 http://d.old.wanfangdata.com.cn/Conference/9214548
    [14] Thomas D C, Scott M A. Isogeometric analysis based on T-splines[M]//Beer G, Bordas S. Isogeometric Methods for Numerical Simulation. Vienna: Springer, 2015
    [15] Deng J S, Chen F L, Li X, et al. Polynomial splines over hierarchical T-meshes[J]. Graphical Models, 2008, 70(4):76-86 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0224104075/
    [16] Evans E J, Scott M A, Li X, et al. Hierarchical T-splines:Analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 284:1-20 doi: 10.1016/j.cma.2014.05.019
    [17] Anitescu C, Hossain M N, Rabczuk T. Recovery-based error estimation and adaptivity using high-order splines over hierarchical T-meshes[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 328:638-662 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eee61eb8689cdea8c0bedf31735bfc9e
    [18] Chen L, De Borst R. Adaptive refinement of hierarchical T-splines[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 337(6):220-245 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eab631182ffb9b5e623dada59f862f67
  • 加载中
图(14)
计量
  • 文章访问数:  214
  • HTML全文浏览量:  193
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-08
  • 刊出日期:  2020-05-05

目录

    /

    返回文章
    返回