留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变分模态分解与深度信念网络的双转子不对中程度识别

张帆宇 杨大炼 李学军 苗晶晶 张宏献

张帆宇, 杨大炼, 李学军, 苗晶晶, 张宏献. 变分模态分解与深度信念网络的双转子不对中程度识别[J]. 机械科学与技术, 2020, 39(5): 773-779. doi: 10.13433/j.cnki.1003-8728.20190189
引用本文: 张帆宇, 杨大炼, 李学军, 苗晶晶, 张宏献. 变分模态分解与深度信念网络的双转子不对中程度识别[J]. 机械科学与技术, 2020, 39(5): 773-779. doi: 10.13433/j.cnki.1003-8728.20190189
Zhang Fanyu, Yang Dalian, Li Xuejun, Miao Jingjing, Zhang Hongxian. Dual-rotor Misalignment State Recognition Using Variational Mode Decomposition and Deep Belief Network[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(5): 773-779. doi: 10.13433/j.cnki.1003-8728.20190189
Citation: Zhang Fanyu, Yang Dalian, Li Xuejun, Miao Jingjing, Zhang Hongxian. Dual-rotor Misalignment State Recognition Using Variational Mode Decomposition and Deep Belief Network[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(5): 773-779. doi: 10.13433/j.cnki.1003-8728.20190189

变分模态分解与深度信念网络的双转子不对中程度识别

doi: 10.13433/j.cnki.1003-8728.20190189
基金项目: 

国家自然科学基金项目 11702091

国家自然科学基金项目 51575178

国家自然科学基金项目 11672106

湖南省自然科学基金项目 2018JJ3140

详细信息
    作者简介:

    张帆宇(1995-), 硕士研究生, 研究方向为故障诊断与深度学习, zhangfanyu6@163.com

    通讯作者:

    杨大炼, 讲师, 硕士生导师, hyydl216@163.com

  • 中图分类号: TH17

Dual-rotor Misalignment State Recognition Using Variational Mode Decomposition and Deep Belief Network

  • 摘要: 准确识别不对中严重程度是保障航空发动机双转子系统安全稳定运行的重要途径。但不对中程度信息微弱,现有方法难以对其准确识别,为此本文提出了基于变分模态分解与深度信念网络的双转子不对中程度识别方法。实验采集了3种不对中程度下的振动加速度信号,首先采用变分模态分解将振动信号分解;其次对模态函数进行分析,根据互信息理论确定VMD的分解层数,重构模态信号作为特征输入向量,并用于深度信念网络分类模型训练。通过与VMD+BP、VMD+SVM、原始信号+DBN模型的识别率进行对比分析,结果表明,本文提出的VMD+DBN模型提高了双转子不对中程度的识别准确度,验证了该方法的有效性。
  • 图  1  由3个RBM组成的DBN模型结构图

    图  2  识别方法模型示意图

    图  3  实验台实验图

    图  4  VMD分解信号图

    图  5  VMD分解信号频谱图

    图  6  重构信号图

    图  7  预测标签与实际标签对比图

    表  1  实验工况描述

    实验编号 不对中程度/mm
    T1 0
    T2 1
    T3 2
    下载: 导出CSV

    表  2  不同K值对应的互信息值

    模态数K 互信息值
    2 0.160 1 0.028 5
    3 0.156 2 0.020 9 0.024 7
    4 0.078 1 0.079 8 0.020 5 0.023 0
    5 0.078 1 0.078 9 0.019 7 0.025 3 0.006 4
    下载: 导出CSV

    表  3  数据集的诊断结果

    方法 训练样本识别率/% 测试样本识别率/% 平均识别率/%
    VMD能量熵+BP-1 98 88.5 93.3
    VMD能量熵+BP-2 98.4 87.9 93.2
    VMD能量熵+BP-3 97.3 88.1 92.7
    VMD能量熵+SVM 99.9 97.3 98.6
    原始信号+DBN-1 100 99.3 99.7
    原始信号+DBN-2 100 99.2 99.6
    原始信号+DBN-3 100 99.5 99.8
    VMD+DBN 100 100 100
    下载: 导出CSV
  • [1] 刘长福, 邓明.航空发动机结构分析[M].西安:西北工业大学出版社, 2006

    Liu C F, Deng M. Aeroengine structural analysis[M]. Xi'an:Northwest University of Technology Press, 2006(in Chinese)
    [2] 韩清凯, 王美令, 赵广, 等.转子系统不对中问题的研究进展[J].动力学与控制学报, 2016, 14(1):1-13 http://d.old.wanfangdata.com.cn/Periodical/dlxykzxb201601001

    Han Q K, Wang M L, Zhao G, et al. A review of rotor systems with misalignment[J]. Journal of Dynamics and Control, 2016, 14(1):1-13(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/dlxykzxb201601001
    [3] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1998, 454(1971):903-995 doi: 10.1098/rspa.1998.0193
    [4] Smith J S. The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society Interface, 2005, 2(5):443-454 doi: 10.1098/rsif.2005.0058
    [5] 向玲, 鄢小安.汽轮机转子故障诊断中LMD法和EMD法的性能对比研究[J].动力工程学报, 2014, 34(12):945-951 http://d.old.wanfangdata.com.cn/Periodical/dlgc201412004

    Xiang L, Yan X A. Performance contrast between LMD and EMD in fault diagnosis of turbine rotors[J]. Journal of Chinese Society of Power Engineering, 2014, 34(12):945-951(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/dlgc201412004
    [6] Dragomiretskiy K, Zosso D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3):531-544 doi: 10.1109/TSP.2013.2288675
    [7] Li Z P, Chen J L, Zi Y Y, et al. Independence- oriented VMD to identify fault feature for wheel set bearing fault diagnosis of high speed locomotive[J]. Mechanical Systems and Signal Processing, 2017, 85:512-529 doi: 10.1016/j.ymssp.2016.08.042
    [8] 刘长良, 武英杰, 甄成刚.基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J].中国电机工程学报, 2015, 35(13):3358-3365 http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201513020

    Liu C L, Wu Y J, Zhen C G. Rolling bearing fault diagnosis based on variational mode decomposition and fuzzy C means clustering[J]. Proceedings of the CSEE, 2015, 35(13):3358-3365(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201513020
    [9] 黄良沛, 吴超威, 王靖.小波包分析和BP神经网络在滚动轴承故障模式识别中的应用[J].电子测量技术, 2016, 39(4):164-168 doi: 10.3969/j.issn.1002-7300.2016.04.038

    Huang L P, Wu C W, Wang J. Fault pattern recognition of rolling bearing using wavelet package analysis and BP neural network[J]. Electronic Measurement Technology, 2016, 39(4):164-168(in Chinese) doi: 10.3969/j.issn.1002-7300.2016.04.038
    [10] Yan X A, Jia M P. A novel optimized SVM classification algorithm with multi-domain feature and its application to fault diagnosis of rolling bearing[J]. Neurocomputing, 2018, 313:47-64 doi: 10.1016/j.neucom.2018.05.002
    [11] 赵光权, 葛强强, 刘小勇, 等.基于DBN的故障特征提取及诊断方法研究[J].仪器仪表学报, 2016, 37(9):1946-1953 doi: 10.3969/j.issn.0254-3087.2016.09.004

    Zhao G Q, Ge Q Q, Liu X Y, et al. Fault feature extraction and diagnosis method based on deep belief network[J]. Chinese Journal of Scientific Instrument, 2016, 37(9):1946-1953(in Chinese) doi: 10.3969/j.issn.0254-3087.2016.09.004
    [12] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554 doi: 10.1162/neco.2006.18.7.1527
    [13] 吕启, 窦勇, 牛新, 等.基于DBN模型的遥感图像分类[J].计算机研究与发展, 2014, 51(9):1911-1918 http://d.old.wanfangdata.com.cn/Periodical/jsjyjyfz201409004

    Lü Q, Dou Y, Niu X, et al. Remote sensing image classification based on DBN model[J]. Journal of Computer Research and Development, 2014, 51(9):1911-1918(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jsjyjyfz201409004
    [14] Dahl G E, Yu D, Deng L. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(1):30-42 doi: 10.1109/TASL.2011.2134090
    [15] Huang H B, Huang X R, Li R X, et al. Sound quality prediction of vehicle interior noise using deep belief networks[J]. Applied Acoustics, 2016, 113:149-161 doi: 10.1016/j.apacoust.2016.06.021
    [16] Ma S, Chu F L. Ensemble deep learning-based fault diagnosis of rotor bearing systems[J]. Computers in Industry, 2019, 105:143-152 doi: 10.1016/j.compind.2018.12.012
    [17] 李巍华, 单外平, 曾雪琼.基于深度信念网络的轴承故障分类识别[J].振动工程学报, 2016, 29(2):340-347 http://d.old.wanfangdata.com.cn/Periodical/zdgcxb201602020

    Li W H, Shan W P, Zeng X Q. Bearing fault identification based on deep belief network[J]. Journal of Vibration Engineering, 2016, 29(2):340-347(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zdgcxb201602020
    [18] 孟飒飒, 孔德明, 崔江, 等.基于DBN的航空发电机旋转整流器故障诊断方法[J].航空计算技术, 2018, 48(4):105-108, 111 doi: 10.3969/j.issn.1671-654X.2018.04.027

    Meng S S, Kong D M, Cui J, et al. Fault detection method of aircraft generator rotating rectifier based on DBN[J]. Aeronautical Computing Technique, 2018, 48(4):105-108, 111(in Chinese) doi: 10.3969/j.issn.1671-654X.2018.04.027
    [19] Hinton G E. Training products of experts by minimizing contrastive divergence[J]. Neural Computation, 2002, 14(8):1771-1800 doi: 10.1162/089976602760128018
    [20] 胡爱军.Hilbert-Huang变换在旋转机械振动信号分析中的应用研究[D].保定: 华北电力大学(河北), 2008

    Hu A J. Research on the application of Hilbert-Huang transform in vibration signal analysis of rotating machinery[D]. Baoding: North China Electric Power University (Hebei), 2008(in Chinese)
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  245
  • HTML全文浏览量:  141
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-13
  • 刊出日期:  2020-05-05

目录

    /

    返回文章
    返回