留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光纤激光微加工钕铁硼工艺特性研究

仝志宏 刘国东 祝锡晶 黎相孟 任宁

仝志宏, 刘国东, 祝锡晶, 黎相孟, 任宁. 光纤激光微加工钕铁硼工艺特性研究[J]. 机械科学与技术, 2019, 38(11): 1760-1765. doi: 10.13433/j.cnki.1003-8728.20190171
引用本文: 仝志宏, 刘国东, 祝锡晶, 黎相孟, 任宁. 光纤激光微加工钕铁硼工艺特性研究[J]. 机械科学与技术, 2019, 38(11): 1760-1765. doi: 10.13433/j.cnki.1003-8728.20190171
Tong Zhihong, Liu Guodong, Zhu Xijing, Li Xiangmeng, Ren Ning. Technological Characteristics of NdFeB via Fiber Laser Micro-machining[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(11): 1760-1765. doi: 10.13433/j.cnki.1003-8728.20190171
Citation: Tong Zhihong, Liu Guodong, Zhu Xijing, Li Xiangmeng, Ren Ning. Technological Characteristics of NdFeB via Fiber Laser Micro-machining[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(11): 1760-1765. doi: 10.13433/j.cnki.1003-8728.20190171

光纤激光微加工钕铁硼工艺特性研究

doi: 10.13433/j.cnki.1003-8728.20190171
基金项目: 

山西省自然科学基金项目 201801D121182

国家自然科学基金项目 51705479

详细信息
    作者简介:

    仝志宏(1994-), 硕士研究生, 研究方向为精密制造与特种加工, 18435152559@163.com

    通讯作者:

    刘国东, 讲师, 博士, 1780817973@qq.com

  • 中图分类号: TN249

Technological Characteristics of NdFeB via Fiber Laser Micro-machining

  • 摘要: 为寻求一种新型高效的钕铁硼微加工手段,探究了光纤激光刻蚀1.5 mm厚的钕铁硼工艺实验,分析了各工艺参数对刻蚀深度、沟槽表面形貌和热影响区的影响规律。结果表明,刻蚀深度随激光功率的增大而增大,当激光功率为12 W时,深度增加到120.1 μm,随后其增长趋势逐渐趋于平缓。较低的激光频率,能获得较大的刻蚀沟槽深度,最大可达149.3 μm,但沟槽边缘形貌变差。适宜的低速刻蚀,不仅能获得较深的沟槽,而且还能保证材料去蚀量的同时,获得较好的边缘形貌和较小的热影响区。扫描次数增大到6次时,激光深度增大到139.5 μm,此时的沟槽槽壁挂渣最少,边缘形貌最佳。
  • 图  1  光纤激光刻蚀钕铁硼材料装置示意图

    图  2  不同激光功率下激光刻蚀钕铁硼沟槽的表面形貌以及刻蚀区域的深度和宽度

    图  3  不同重复频率下激光刻蚀钕铁硼沟槽的表面形貌以及刻蚀区域的深度和宽度

    图  4  不同扫描速度下激光刻蚀钕铁硼沟槽的表面形貌以及刻蚀区域的深度和宽度

    图  5  激光光斑重叠示意图

    图  6  不同扫描次数下激光刻蚀钕铁硼沟槽的表面形貌以及刻蚀区域的深度和宽度

    表  1  钕铁硼的主要化学成分

    元素
    含量/% 29~32.5 63.95~68.95 1.1~1.2 0.6~8 0.3~0.5 0.3~0.5 0.05~0.15
    下载: 导出CSV

    表  2  激光刻蚀工艺参数

    工艺参数 数值
    激光功率P/W 6, 8, 10, 12, 14, 16
    激光频率f/kHz 30, 40, 50, 60, 70, 80
    扫描速度v/(mm·s-1) 0.05, 0.1, 0.2, 0.4, 0.8, 1.2
    扫描次数 1, 2, 4, 6, 8, 10
    下载: 导出CSV
  • [1] 杨桂栓, 陈涛, 陈虹.248 nm准分子激光刻蚀的无裂损石英玻璃表面微通道[J].中国激光, 2017, 44(9):0902004 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201709016

    Yang G S, Chen T, Chen H. Crack-free silica glass surface micro-grooves etched by 248 nm excimer lasers[J]. Chinese Journal of Lasers, 2017, 44(9):090024(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201709016
    [2] 杨焕, 黄珊, 段军, 等.飞秒与纳秒激光刻蚀单晶硅对比研究[J].中国激光, 2013, 40(1):0103003 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201301014

    Yang H, Huang S, Duan J, et al. Contrastive study on laser ablation of single-crystal silicon by 1030 nm femtosecond laser and 355 nm nanosecond laser[J]. Chinese Journal of Lasers, 2013, 40(1):0103003(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201301014
    [3] 郭太勇, 张立木, 任莹莹, 等.飞秒激光烧蚀氟化钙晶体表面特性[J].光学学报, 2019, 39(1):0126017 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201901019

    Guo T Y, Zhang L M, Ren Y Y, et al. Femtosecond excitation Study on the surface of calcium fluoride crystals by photo ablation[J]. Journal of Optics, 2019, 39(1):0126017(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201901019
    [4] Qi L T, Nishii K, Yasui M, et al. Femtosecond laser ablation of sapphire on different crystallographic facet planes by single and multiple laser pulses irradiation[J]. Optics and Lasers in Engineering, 2010, 48(10):1000-1007 doi: 10.1016/j.optlaseng.2010.05.006
    [5] Samad R E, Vieira Jr N D. Geometrical method for determining the surface damage threshold for femtosecond laser pulses[J]. Laser Physics, 2006, 16(2):336-339 doi: 10.1134/S1054660X06020228
    [6] Sanner N, Utéza O, Bussiere B, et al. Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics[J]. Applied Physics A, 2009, 94(4):889-897 doi: 10.1007/s00339-009-5077-6
    [7] Gai X C, Dong Z W, Zhao Q L, et al. Femtosecond laser micromachining of SiC ceramic structures[J]. Materials Science Forum, 2013, 770:21-24 doi: 10.4028/www.scientific.net/MSF.770.21
    [8] Ho C Y, Wen M Y. Ultrashort-pulse laser microablation of aluminum oxide ceramics[C]//Proceedings of the 6th IEEE International Conference on Nano/micro Engineered and Molecular Systems. China, Kaohsiung, Taiwan, China: IEEE, 2011
    [9] Zhang P, Chen L, Chen J X, et al. Material removal effect of microchannel processing by femtosecond laser[J]. Optics and Lasers in Engineering, 2017, 98:69-75 doi: 10.1016/j.optlaseng.2017.06.001
    [10] Carrella M, Aurich J C. Micromachining of silicon-study on the material removal mechanism[J]. Advanced Materials Research, 2014, 1018:167-174 doi: 10.4028/www.scientific.net/AMR.1018.167
    [11] Ihlemann J, Wolff B, Simon P. Nanosecond and femtosecond excimer laser ablation of fused silica[J]. Applied Physics A, 1992, 54(4):363-368 doi: 10.1007/BF00324203
    [12] Karnakis D M, Rutterford G, Knowles M R H. High power DPSS laser Micro-machining of silicon and stainless steel[C]//Proceedings of the Third International WLT-Conference on Lasers in Manufacturing 2005. Munich, 2005: 1-5
    [13] 王成, 曾晓雁.Al2O3陶瓷的激光三维雕刻实验研究[J].激光技术, 2007, 31(1):18-21 doi: 10.3969/j.issn.1001-3806.2007.01.026

    Wang C, Zeng X Y. Experimental study about 3-D laser carving of Al2O3 ceramic[J]. Laser Technology, 2007, 31(1):18-21(in Chinese) doi: 10.3969/j.issn.1001-3806.2007.01.026
    [14] 朱凯, 侯仰龙.稀土永磁纳米材料的控制合成及其磁学性能[J].稀有金属, 2017, 41(5):466-474 http://d.old.wanfangdata.com.cn/Periodical/xyjs201705004

    Zhu K, Hou Y L. Controllable synthesis of rare-earth based permanent magnetic nanomaterials and their magnetic properties[J]. Chinese Journal of Rare Metals, 2017, 41(5):466-474(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/xyjs201705004
    [15] Hoffman J, Chrzanowska J, Kucharski S, et al. The effect of laser wavelength on the ablation rate of carbon[J]. Applied Physics A, 2014, 117(1):395-400 http://cn.bing.com/academic/profile?id=62bf1caa829ad9b150ac919a5b668234&encoded=0&v=paper_preview&mkt=zh-cn
    [16] Phillips K C, Gandhi H H, Mazur E, et al. Ultrafast laser processing of materials: a review[J]. Advances in Optics and Photonics, 2015, 7(4):684 doi: 10.1364/AOP.7.000684
    [17] Heiroth S, Koch J, Lippert T, et al. Laser ablation characteristics of yttria-doped zirconia in the nanosecond and femtosecond regimes[J]. Journal of Applied Physics, 2010, 107(1):014908 doi: 10.1063/1.3275868
    [18] Vladoiu I, Stafe M, Negutu C, et al. Nanopulsed ablation rate of metals dependence on the laser fluence and wavelength in atmospheric air[J]. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2008, 70(4):119-126
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  130
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-03
  • 刊出日期:  2019-11-05

目录

    /

    返回文章
    返回