留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

局部保形映射到整体能量优化的曲面展平

彭威 吉卫喜

彭威, 吉卫喜. 局部保形映射到整体能量优化的曲面展平[J]. 机械科学与技术, 2019, 38(8): 1239-1243. doi: 10.13433/j.cnki.1003-8728.20190108
引用本文: 彭威, 吉卫喜. 局部保形映射到整体能量优化的曲面展平[J]. 机械科学与技术, 2019, 38(8): 1239-1243. doi: 10.13433/j.cnki.1003-8728.20190108
Peng Wei, Ji Weixi. Surface Flattening Algorithm from Local Conformal Mapping to Global Energy Optimization[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(8): 1239-1243. doi: 10.13433/j.cnki.1003-8728.20190108
Citation: Peng Wei, Ji Weixi. Surface Flattening Algorithm from Local Conformal Mapping to Global Energy Optimization[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(8): 1239-1243. doi: 10.13433/j.cnki.1003-8728.20190108

局部保形映射到整体能量优化的曲面展平

doi: 10.13433/j.cnki.1003-8728.20190108
基金项目: 

国家自然科学基金项目 11402264

中央高校基本科研业务费专项资金项目 JUSRP116026

详细信息
    作者简介:

    彭威(1984-), 讲师, 博士, 研究方向为数字化设计制造及有限元技术, weipeng@jiangnan.edu.cn

  • 中图分类号: TP391

Surface Flattening Algorithm from Local Conformal Mapping to Global Energy Optimization

  • 摘要: 针对复杂网格曲面提出了一种局部保形映射到整体弹性能量优化的曲面展平算法。该方法基于局部到整体的思路,通过分析作用在局部三角形上的仿射变换雅可比矩阵的奇异值,得到三角形到平面参数域的保形映射。在此基础上,通过迭代优化由网格线弹性应变能组成的能量函数,使得整体网格的节点内力达到平衡状态,对局部保形映射后的网格进行整体拼接和优化。应用实例表明,该方法稳定可靠,能得到较好的网格曲面展平结果。
  • 图  1  三角形保形映射

    图  2  曲面网格展平过程

    图  3  钣金件模型曲面网格展平对比

    图  4  覆盖件模型曲面网格展平

    图  5  摇臂模型曲面网格展平

    图  6  翼子板模型曲面网格展平

    表  1  曲面展平结果统计

    参数名 模型
    图 2 图 3 图 4 图 5 图 6
    单元数 280 18 444 24 584 9 312 12 247
    节点数 518 9 407 12 488 4 952 11 177
    ABF++ 角度扭曲 2.02 2.03 2.01 2.05 2.00
    面积扭曲 2.35 2.64 2.19 4.37 2.09
    计算时间/s 0.89 19.53 25.12 7.01 30.68
    本文方法 角度扭曲 2.06 2.02 2.01 2.09 2.00
    面积扭曲 2.01 2.00 2.00 2.04 2.00
    计算时间/s 0.04 10.34 13.84 3.55 21.59
    下载: 导出CSV
  • [1] 郭凤华, 张彩明, 焦文江.网格参数化研究进展[J].软件学报, 2016, 27(1):112-135 http://d.old.wanfangdata.com.cn/Periodical/rjxb201601006

    Guo F H, Zhang C M, Jiao W J. Research progress on mesh parameterization[J]. Journal of Software, 2016, 27(1):112-135(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/rjxb201601006
    [2] 许晨旸, 李静蓉, 王清辉, 等.利用ABF++保角参数化的网格曲面刀轨规划[J].计算机辅助设计与图形学学报, 2017, 29(4):728-733 doi: 10.3969/j.issn.1003-9775.2017.04.018

    Xu C Y, Li J R, Wang Q H, et al. Tool path planning using angle-based flattening for mesh surfaces machining[J]. Journal of Computer-Aided Design & Computer Graphics, 2017, 29(4):728-733(in Chinese) doi: 10.3969/j.issn.1003-9775.2017.04.018
    [3] Floater M S. Mean value coordinates[J]. Computer Aided Geometric Design, 2003, 20(1):19-27 doi: 10.1016/S0167-8396(03)00002-5
    [4] 张磊, 刘利刚, 王国瑾.保相似的网格参数化[J].中国图象图形学报, 2008, 13(12):2383-2387 doi: 10.11834/jig.20081221

    Zhang L, Liu L G, Wang G J. As-similar-as-possible planar parameterization[J]. Journal of Image and Graphics, 2008, 13(12):2383-2387(in Chinese) doi: 10.11834/jig.20081221
    [5] Sheffer A, Lévy B, Mogilnitsky M, et al. ABF++:fast and robust angle based flattening[J]. ACM Transactions on Graphics, 2005, 24(2):311-330 doi: 10.1145/1061347.1061354
    [6] Liu Q S, Xi J T, Wu Z Q. An energy-based surface flattening method for flat pattern development of sheet metal components[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(5-8):1155-1166 doi: 10.1007/s00170-013-4908-y
    [7] Liu X H, Li S P, Zheng X H, et al. Development of a flattening system for sheet metal with free-form surface[J]. Advances in Mechanical Engineering, 2016, 8(2):1-12, doi: 10.1177/1687814016630517
    [8] Yi B, Yang Y, Zheng R, et al. Triangulated surface flattening based on the physical shell model[J]. Journal of Mechanical Science and Technology, 2018, 32(5):2163-2171 doi: 10.1007/s12206-018-0425-0
    [9] Zhu X F, Hu P, Ma Z D, et al. A new surface parameterization method based on one-step inverse forming for isogeometric analysis-suited geometry[J]. The International Journal of Advanced Manufacturing Technology, 2013, 65(9-12):1215-1227 doi: 10.1007/s00170-012-4251-8
    [10] Zhuang M L, Zhang X F. A novel apparel surface flattening algorithm[J]. International Journal of Clothing Science and Technology, 2013, 25(4):300-316 doi: 10.1108/09556221311326329
    [11] Wang Z, Luo Z X, Zhang J L, et al. ARAP++:an extension of the local/global approach to mesh parameterization[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(6):501-515 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_d2d7e49db156d57f1bce47010af8c75b
    [12] Zhang Y B, Wang C C L, Ramani K. Optimal fitting of strain-controlled flattenable mesh surfaces[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(9-12):2873-2887 doi: 10.1007/s00170-016-8669-2
    [13] Su K H, Cui L, Qian K, et al. Area-preserving mesh parameterization for poly-annulus surfaces based on optimal mass transportation[J]. Computer Aided Geometric Design, 2016, 46:76-91 doi: 10.1016/j.cagd.2016.05.005
    [14] Zhao H, Li X, Ge H B, et al. Conformal mesh parameterization using discrete Calabi flow[J]. Computer Aided Geometric Design, 2018, 63:96-108 doi: 10.1016/j.cagd.2018.03.001
    [15] Xue J X, Li Q B, Liu C M, et al. Parameterization of triangulated surface meshes based on constraints of distortion energy optimization[J]. Journal of Visual Languages & Computing, 2018, 46:53-62 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4ea83d96d427d270e688fddc3f94c9df
    [16] Chandrupatla T R, Belegundu A D.工程中的有限元方法[M].曾攀, 雷丽萍, 译.北京: 机械工业出版社, 2015

    Chandrupatla T R, Belegundu A D. Introduction to finite elements in engineering[M]. Zeng P, Lei L P, trans. Beijing: China Machine Press, 2015(in Chinese)
    [17] Degener P, Meseth J, Klein R. An adaptable surface parametrization method[C]//Proceedings of the 12th International Meshing Roundtable. Santa Fe, New Mexico, USA: IMR, 2003: 201-213
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  515
  • HTML全文浏览量:  228
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-05
  • 刊出日期:  2019-08-05

目录

    /

    返回文章
    返回