留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿生爪刺式双足爬壁机器人设计与分析

刘彦伟 黄响 王李梦 梅涛 李言

刘彦伟, 黄响, 王李梦, 梅涛, 李言. 仿生爪刺式双足爬壁机器人设计与分析[J]. 机械科学与技术, 2019, 38(8): 1185-1190. doi: 10.13433/j.cnki.1003-8728.20190107
引用本文: 刘彦伟, 黄响, 王李梦, 梅涛, 李言. 仿生爪刺式双足爬壁机器人设计与分析[J]. 机械科学与技术, 2019, 38(8): 1185-1190. doi: 10.13433/j.cnki.1003-8728.20190107
Liu Yanwei, Huang Xiang, Wang Limeng, Mei Tao, Li Yan. Design and Analysis of a Bio-inspired Biped Wall-climbing Robot with Spines[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(8): 1185-1190. doi: 10.13433/j.cnki.1003-8728.20190107
Citation: Liu Yanwei, Huang Xiang, Wang Limeng, Mei Tao, Li Yan. Design and Analysis of a Bio-inspired Biped Wall-climbing Robot with Spines[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(8): 1185-1190. doi: 10.13433/j.cnki.1003-8728.20190107

仿生爪刺式双足爬壁机器人设计与分析

doi: 10.13433/j.cnki.1003-8728.20190107
基金项目: 

中国博士后科学基金项目 2018M643695

陕西省自然科学基础研究计划项目 2018JQ5062

国家自然科学基金项目 51805431

详细信息
    作者简介:

    刘彦伟(1987-), 讲师, 博士, 研究方向为仿生机器人技术, liuyw@xaut.edu.cn

  • 中图分类号: TP242

Design and Analysis of a Bio-inspired Biped Wall-climbing Robot with Spines

  • 摘要: 针对自然界广泛存在的粗糙壁面应用环境,提出了一种模仿昆虫攀爬动作的仿生爪刺式双足爬壁机器人。该机器人包括双腿和尾部车轮,由腿部切比雪夫连杆机构驱动双足在壁面上交替抓附爬行,可以实现类似昆虫足部的抓附、脱附动作,能够实现在竖直粗糙砖面上稳定爬行,具有一定的越障能力。建立了机器人腿部连杆机构模型,分析了机器人爬行过程中的足部爪刺的抓附、脱附动作,并在多种壁面上对机器人样机开展了爬行实验。
  • 图  1  仿生爪刺式双足爬壁机器人结构图

    图  2  爪刺足片柔顺结构仿生设计

    图  3  仿生爪刺足结构图

    图  4  机器人腿部结构图

    图  5  切比雪夫连杆机构模型

    图  6  切比雪夫连杆机构足端“D”形运动轨迹

    图  7  机器人静力学受力分析示意图

    图  8  机器人一个攀爬周期内的动作序列

    图  9  爬行过程中机器人足端运动轨迹的仿真结果

    图  10  足端运动轨迹

    图  11  足2足端爪刺方位角仿真结果

    图  12  仿生爪刺式双足爬壁机器人样机

    图  13  机器人在竖直砖面上爬行动作序列图

    图  14  机器人向上翻越砖面台阶序列图

    图  15  机器人向下翻越砖面台阶序列图

    图  16  爪刺-壁面接触力测试平台

    图  17  爪刺与壁面间的接触力测试结果

    表  1  腿部切比雪夫连杆机构的参数表

    参数名 a b c d e f g
    尺寸/mm 34.5 15.5 14 35 21.5 40 25.5
    下载: 导出CSV
  • [1] Nansai S, Mohan R E. A survey of wall climbing robots:Recent advances and challenges[J]. Robotics, 2016, 5(3):14 doi: 10.3390/robotics5030014
    [2] Bußhardt P, Kunze D, Gorb S N. Interlocking-based attachment during locomotion in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae)[J]. Scientific Reports, 2014, 4:6998
    [3] Asbeck A T, Kim S, Cutkosky M R, et al. Scaling hard vertical surfaces with compliant microspine arrays[J]. The International Journal of Robotics Research, 2006, 25(12):1165-1179 doi: 10.1177/0278364906072511
    [4] Spenko M J, Haynes G C, Saunders J A, et al. Biologically inspired climbing with a hexapedal robot[J]. Journal of Field Robotics, 2008, 25(4-5):223-242 doi: 10.1002/rob.20238
    [5] Haynes G C, Khripin A, Lynch G, et al. Rapid pole climbing with a quadrupedal robot[C]//Proceedings of 2009 IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009: 2767-2772
    [6] Parness A, Abcouwer N, Fuller C, et al. LEMUR 3: a limbed climbing robot for extreme terrain mobility in space[C]//Proceedings of 2017 IEEE International Conference on Robotics and Automation. Singapore: IEEE, 2017: 5467-5473
    [7] Sintov A, Avramovich T, Shapiro A. Design and motion planning of an autonomous climbing robot with claws[J]. Robotics and Autonomous Systems, 2011, 59(11):1008-1019 doi: 10.1016/j.robot.2011.06.003
    [8] Liu G W, Liu Y W, Wang X J, et al. Design and experiment of a bioinspired wall-climbing robot using spiny grippers[C]//Proceedings of 2016 IEEE International Conference on Mechatronics and Automation. Harbin, China: IEEE, 2016: 665-670
    [9] 陈东良, 张群, 王立权, 等.一种粗糙壁面爬行机器人的设计与实现[J].哈尔滨工程大学学报, 2012, 33(2):209-213 doi: 10.3969/j.issn.1006-7043.201012057

    Chen D L, Zhang Q, Wang L Q, et al. Design and realization of a kind of rough wall climbing robot[J]. Journal of Harbin Engineering University, 2012, 33(2):209-213(in Chinese) doi: 10.3969/j.issn.1006-7043.201012057
    [10] 江南.对抓钩爪式六足爬壁机器人[D].南京: 南京航空航天大学, 2018

    Jiang N. A claws-paired hexapod climbing robot[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018(in Chinese)
    [11] Xu F Y, Wang B, Shen J J, et al. Design and realization of the claw gripper system of a climbing robot[J]. Journal of Intelligent & Robotic Systems, 2018, 89(3-4):301-317 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dc5610225bae841af5043a364ad11cef
    [12] Liu Y Y, Lam T L, Qian H H, et al. Design and analysis of gripper with retractable spine for tree climbing robots[C]//Proceedings of 2014 IEEE International Conference on Information and Automation. Hailar, China: IEEE, 2014: 350-355
    [13] Carpenter K, Wiltsie N, Parness A. Rotary microspine rough surface mobility[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(5):2378-2390 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dda414bc1b6a48022bd6c4050356bb57
    [14] Liu Y W, Sun S M, Wu X, et al. A wheeled wall-climbing robot with bio-inspired spine mechanisms[J]. Journal of Bionic Engineering, 2015, 12(1):17-28 doi: 10.1016/S1672-6529(14)60096-2
    [15] Rea P, Ottaviano E. Design and development of an inspection robotic system for indoor applications[J]. Robotics and Computer-Integrated Manufacturing, 2018, 49:143-151 doi: 10.1016/j.rcim.2017.06.005
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  618
  • HTML全文浏览量:  546
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-30
  • 刊出日期:  2019-08-05

目录

    /

    返回文章
    返回