留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型动静压转台内部油膜压力场的数值模拟

李佳 马金奎 丁龙威 刘志颖

李佳, 马金奎, 丁龙威, 刘志颖. 新型动静压转台内部油膜压力场的数值模拟[J]. 机械科学与技术, 2019, 38(12): 1812-1818. doi: 10.13433/j.cnki.1003-8728.20190094
引用本文: 李佳, 马金奎, 丁龙威, 刘志颖. 新型动静压转台内部油膜压力场的数值模拟[J]. 机械科学与技术, 2019, 38(12): 1812-1818. doi: 10.13433/j.cnki.1003-8728.20190094
Li Jia, Ma Jinkui, Ding Longwei, Liu Zhiying. Numerically Simulating Pressure Field of Oil Film in a New Hybrid Rotary Table[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(12): 1812-1818. doi: 10.13433/j.cnki.1003-8728.20190094
Citation: Li Jia, Ma Jinkui, Ding Longwei, Liu Zhiying. Numerically Simulating Pressure Field of Oil Film in a New Hybrid Rotary Table[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(12): 1812-1818. doi: 10.13433/j.cnki.1003-8728.20190094

新型动静压转台内部油膜压力场的数值模拟

doi: 10.13433/j.cnki.1003-8728.20190094
基金项目: 

国家自然科学基金项目 51575318

详细信息
    作者简介:

    李佳(1995-), 硕士研究生, 研究方向为动静压转台油膜流场, 952119317@qq.com

    通讯作者:

    马金奎, 副教授, 硕士生导师, mjk@sdu.edu.cn

  • 中图分类号: TH133.3

Numerically Simulating Pressure Field of Oil Film in a New Hybrid Rotary Table

  • 摘要: 以新型螺旋油楔动静压转台为研究对象,采用基于Navier-Stokes方程的CFD(Computational fluid dynamics)软件模拟转台内部润滑油的压力场分布,分析不同转速和油膜厚度对转台内部压力场分布的影响,并进行了实验验证。分析结果表明,在同一供油压力下,油膜厚度较转速对静压油膜压力的影响更为明显;而油膜厚度和转速都会对动压压力峰值造成显著影响;油膜厚度一定且转速较高时,动压压力峰值明显高于静压腔内压力。CFD仿真结果与实验测试结果基本吻合,从而证实了仿真结果的可靠性及分析方法的可行性。
  • 图  1  新型动静压转台结构模型

    图  2  转台中盘油腔结构图

    图  3  油膜网格模型

    图  4  部分油膜几何模型及Part设置

    图  5  转台油膜压力场分布

    图  6  不同转速条件下转台油膜压力

    图  7  不同油膜厚度条件下转台油膜压力

    图  8  实验设备

    图  9  实验与仿真结果对比

  • [1] Hirano T, Guo Z L, Kirk R G. Application of computational fluid dynamics analysis for rotating machinery-part Ⅱ:labyrinth seal analysis[J]. Journal of Engineering for Gas Turbines and Power, 2005, 127(4):820-826 doi: 10.1115/1.1808426
    [2] Kozdera M, Drbáková S. Numerical modelling of the flow in the annular multi-recess hydrostatic thrust bearing using CFD methods[J]. EPJ Web of Conferences, 2013, 45:01051 doi: 10.1051/epjconf/20134501051
    [3] 于天彪, 王学智, 关鹏, 等.基于FLUENT的液体动静压轴承的动态特性分析[J].润滑与密封, 2012, 37(6):1-5 doi: 10.3969/j.issn.0254-0150.2012.06.001

    Yu T B, Wang X Z, Guan P, et al. Dynamic characteristics analysis on liquid hybrid bearing based on FLUENT[J]. Lubrication Engineering, 2012, 37(6):1-5(in Chinese) doi: 10.3969/j.issn.0254-0150.2012.06.001
    [4] Shao J P, Dai C X, Zhang Y Q, et al. The effect of oil cavity depth on temperature field in heavy hydrostatic thrust bearing[J]. Journal of Hydrodynamics, 2011, 23(5):676-680 doi: 10.1016/S1001-6058(10)60164-3
    [5] 张艳芹, 陈瑶, 范立国, 等.四种油腔形状重型静压轴承承载性能理论分析[J].哈尔滨理工大学学报, 2013, 18(2):68-71 doi: 10.3969/j.issn.1007-2683.2013.02.013

    Zhang Y Q, Chen Y, Fan L G, et al. Theoretical analysis of bearing performance of four shapes of recess in heavy hydrostatic bearing[J]. Journal of Harbin University of Science and Technology, 2013, 18(2):68-71(in Chinese) doi: 10.3969/j.issn.1007-2683.2013.02.013
    [6] 邵俊鹏, 张艳芹, 李鹏程.基于FLUENT的静压轴承椭圆腔和扇形腔静止状态流场仿真[J].润滑与密封, 2007, 32(1):93-95 doi: 10.3969/j.issn.0254-0150.2007.01.028

    Shao J P, Zhang Y Q, Li P C. Static flow simulation of hydrostatic bearing ellipse and sector curve based on FLUENT[J]. Lubrication Engineering, 2007, 32(1):93-95(in Chinese) doi: 10.3969/j.issn.0254-0150.2007.01.028
    [7] 张艳芹, 张志全, 冯雅楠, 等.双矩形腔静压滑动轴承高速时的油膜润滑特性[J].摩擦学学报, 2018, 38(5):609-618 http://d.old.wanfangdata.com.cn/Periodical/mcxxb201805015

    Zhang Y Q, Zhang Z Q, Feng Y N, et al. Lubrication characteristics of double rectangular cavity hydrostatic bearing at high speed[J]. Tribology, 2018, 38(5):609-618(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/mcxxb201805015
    [8] 王少力, 熊万里, 孟曙光, 等.离心力对恒流供油扇形静压推力轴承承载力的影响分析[J].机械强度, 2014, 36(5):716-722 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxqd201405012

    Wang S L, Xiong W L, Meng S G, et al. Influence of centrifugal force on bearing capacity of the fan-shaped hydrostatic thrust bearing supplied with constant oil flow[J]. Journal of Mechanical Strength, 2014, 36(5):716-722(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxqd201405012
    [9] 王少力, 熊万里, 桂林, 等.偏载液体静压转台旋转工况下承载力及倾覆力矩动网格计算方法[J].机械工程学报, 2014, 50(23):66-74 http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201423011

    Wang S L, Xiong W L, Gui L, et al. Dynamic mesh method for calculating bearing capacity and overturning moment of partial loaded hydrostatic rotary tables under rotating condition[J]. Journal of Mechanical Engineering, 2014, 50(23):66-74(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201423011
    [10] 孟晶, 戴惠良, 方波, 等.基于FLUENT的液体动静压轴承油膜特性的分析[J].液压与气动, 2012(8):17-21 doi: 10.3969/j.issn.1000-4858.2012.08.006

    Meng J, Dai H L, Fang B, et al. Analysis on oil film properties of hybrid bearing based on FLUENT[J]. Chinese Hydraulics & Pneumatics, 2012(8):17-21(in Chinese) doi: 10.3969/j.issn.1000-4858.2012.08.006
    [11] 张耀满, 于德光, 杨清波.深浅腔动静压轴承油膜特性[J].东北大学学报, 2018, 39(10):1490-1494 doi: 10.12068/j.issn.1005-3026.2018.10.024

    Zhang Y M, Yu D G, Yang Q B. Oil film characteristics of deep-shallow pocket hybrid bearing[J]. Journal of Northeastern University, 2018, 39(10):1490-1494(in Chinese) doi: 10.12068/j.issn.1005-3026.2018.10.024
    [12] 许尚贤.液体静压和动静压轴承综述[J].磨床与磨削, 1985(4):30-35

    Xu S X. Review on hydrostatic and hydrostatic bearings[J]. Grinder & Grinding, 1985(4):30-35(in Chinese)
    [13] 周堃, 熊万里, 吕浪, 等.液体静压转台技术综述[J].制造技术与机床, 2011(4):22-25, 29 doi: 10.3969/j.issn.1005-2402.2011.04.009

    Zhou K, Xiong W L, Lü L, et al. Review on key technology of hydrostatic rotary table[J]. Manufacturing Technology & Machine Tool, 2011(4):22-25, 29(in Chinese) doi: 10.3969/j.issn.1005-2402.2011.04.009
    [14] 路长厚.一种大型精密差速动静压转台: 中国, 201020615122.9[P]. 2011-06-15

    Lu C H. Large-scale precision differential dynamic and static pressure rotary table: CN, 201020615122.9[P]. 2011-06-15(in Chinese)
    [15] 王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社, 2004

    Wang F J. Computational fluid dynamics-principle and application of CFD software[M]. Beijing:Tsinghua University Press, 2004(in Chinese)
    [16] Muijderman E A. Spiral groove bearings[M]. Eindhoven:Philips Technical Library, 1966:39-40
  • 加载中
图(9)
计量
  • 文章访问数:  561
  • HTML全文浏览量:  302
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-06
  • 刊出日期:  2019-12-05

目录

    /

    返回文章
    返回