留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AnyBody环境下人体步态的逆向动力学研究

徐欢欢 何育民 孙朝阳 郭超

徐欢欢, 何育民, 孙朝阳, 郭超. AnyBody环境下人体步态的逆向动力学研究[J]. 机械科学与技术, 2019, 38(12): 1819-1824. doi: 10.13433/j.cnki.1003-8728.20190069
引用本文: 徐欢欢, 何育民, 孙朝阳, 郭超. AnyBody环境下人体步态的逆向动力学研究[J]. 机械科学与技术, 2019, 38(12): 1819-1824. doi: 10.13433/j.cnki.1003-8728.20190069
Xu Huanhuan, He Yumin, Sun Zhaoyang, Guo Chao. Research of Reverse Dynamics of Human Gait via AnyBody Technology[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(12): 1819-1824. doi: 10.13433/j.cnki.1003-8728.20190069
Citation: Xu Huanhuan, He Yumin, Sun Zhaoyang, Guo Chao. Research of Reverse Dynamics of Human Gait via AnyBody Technology[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(12): 1819-1824. doi: 10.13433/j.cnki.1003-8728.20190069

AnyBody环境下人体步态的逆向动力学研究

doi: 10.13433/j.cnki.1003-8728.20190069
基金项目: 

陕西省自然科学基础研究计划项目 2014JM7269

详细信息
    作者简介:

    徐欢欢(1992-), 硕士研究生, 研究方向为无源下肢外骨骼的设计与研究, xuhuanhuan6688@163.com

    通讯作者:

    何育民, 副教授, 博士, he_yumin@163.com

  • 中图分类号: G804.66

Research of Reverse Dynamics of Human Gait via AnyBody Technology

  • 摘要: 为了分析人体步态运动中包含肌骨系统的下肢动力学特性,基于生物力学分析软件AnyBody建立一种包含肌骨系统的下肢运动模型。利用逆向动力学,在下肢运动关节等处设置运动控制点,以运动控制点三维坐标和地面支反力为驱动,完成了人体的正常步态仿真,得到了人体正常步态下的踝关节和膝关节的角度、力矩的变化曲线,分析了关节力矩与角度变化之间的关系;给出了比目鱼肌、缝匠肌、胫骨后肌和胫骨前肌在步态周期内的肌肉力和活性变化曲线,讨论了肌肉力和肌肉活性之间的关系。
  • 图  1  人体基准面

    图  2  人体下肢肌骨系统

    图  3  人体步态周期

    图  4  人体下肢步态运动模型

    图  5  人体矢状面内的膝、踝关节角度定义

    图  6  步态周期内的踝关节角度变化

    图  7  步态周期内的膝关节角度变化

    图  8  步态周期内踝、膝关节力矩变化

    图  9  步态周期内下肢主要肌肉受力变化

    图  10  步态周期内下肢主要肌肉活性变化

    表  1  人体下肢尺寸

    部位名称 质量/kg 长度/m
    髋关节 9.23 0.175
    大腿(右) 6.86 0.46
    大腿(左) 6.82 0.46
    小腿(右) 3.28 0.43
    小腿(左) 3.28 0.43
    右脚 0.67 0.26
    左脚 0.66 0.26
    下载: 导出CSV
  • [1] 石俊, 姜寿山, 张欣, 等.人体步态研究与仿真的现状和展望[J].系统仿真学报, 2006, 18(10):2703-2708, 2711 doi: 10.3969/j.issn.1004-731X.2006.10.002

    Shi J, Jiang S S, Zhang X, et al. Status quo and trend of research and simulation on human-gait[J]. Journal of System Simulation, 2006, 18(10):2703-2708, 2711(in Chinese) doi: 10.3969/j.issn.1004-731X.2006.10.002
    [2] Hurwitz D E, Ryals A R, Block J A, et al. Knee pain and joint loading in subjects with osteoarthritis of the knee[J]. Journal of Orthopaedic Research, 2000, 18(4):527-579 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_9254ac182b22830ddb06a17e287d8a58
    [3] Damsgaard M, Rasmussen J, Christensen S T, et al. Analysis of musculoskeletal systems in the AnyBody modeling system[J]. Simulation Modelling Practice and Theory, 2006, 14(8):1100-1111 doi: 10.1016/j.simpat.2006.09.001
    [4] Collins S H, Wiggin M B, Sawicki G S. Reducing the energy cost of human walking using an unpowered exoskeleton[J]. Nature, 2015, 522(7555):212-215 doi: 10.1038/nature14288
    [5] Mooney L M, Rouse E J, Herr H M. Autonomous exoskeleton reduces metabolic cost of human walking[J]. Journal of NeuroEngineering and Rehabilitation, 2014, 11(1):151 doi: 10.1186/1743-0003-11-151
    [6] Zelik K E, Huang T W P, Adamczyk P G, et al. The role of series ankle elasticity in bipedal walking[J]. Journal of Theoretical Biology, 2014, 346:75-85 doi: 10.1016/j.jtbi.2013.12.014
    [7] 许鸿谦.助力外骨骼人机系统动力与能量驱动特征研究[D].成都: 西南交通大学, 2018 http://cdmd.cnki.com.cn/Article/CDMD-10613-1018825560.htm

    Xu H Q. The research on power and energy driving of man-machine system exoskeleton[D]. Chengdu: Southwest Jiaotong University, 2018(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10613-1018825560.htm
    [8] 梁国星, 梁宇航, 李志利, 等.基于牛顿-欧拉动力学方程的人体下肢动力学分析[J].航天医学与医学工程, 2017, 30(6):411-417 http://d.old.wanfangdata.com.cn/Periodical/htyxyyxgc201706005

    Liang G X, Liang Y H, Li Z L, et al. Dynamics analysis for human lower limb based on newton-euler equation[J]. Space Medicine & Medical Engineering, 2017, 30(6):411-417(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/htyxyyxgc201706005
    [9] Vaughan C L, Davis B L, O'Connor J C. Dynamics of human gait[M]. South African:Human Kinetics Publishers, 1999
    [10] 何福本, 梁延德, 何太云.类人机器人仿真平台构建及其Matlab实现[J].机械科学与技术, 2011, 30(5):703-707 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxkxyjs201105004

    He F B, Liang Y D, He T Y. Construction and realization of a humanoid robot's simulation platform based on Matlab[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(5):703-707(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxkxyjs201105004
    [11] 贾山, 韩亚丽, 路新亮, 等.基于人体特殊步态分析的下肢外骨骼机构设计[J].机器人, 2014, 36(4):392-401, 410 http://d.old.wanfangdata.com.cn/Periodical/jqr201404002

    Jia S, Han Y L, Lu X L, et al. Design of lower extremity exoskeleton based on analysis on special human gaits[J]. Robot, 2014, 36(4):392-401, 410(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jqr201404002
    [12] 高飞, 项忠霞, 赵明, 等.基于AnyBody的自行车骑行运动仿真与试验分析[J].机械设计, 2016, 33(1):105-110 doi: 10.3969/j.issn.1001-3997.2016.01.029

    Gao F, Xiang Z X, Zhao M, et al. Simulation and testing analysis of bicycle riding motion based on anybody[J]. Journal of Machine Design, 2016, 33(1):105-110(in Chinese) doi: 10.3969/j.issn.1001-3997.2016.01.029
    [13] 尹传盛, 孙芳, 贺缨, 等.基于AnyBody软件平台冷水刺激前后食指动力学[J].中国组织工程研究, 2013, 17(22):4091-4098 doi: 10.3969/j.issn.2095-4344.2013.22.015

    Yin C S, Sun F, He Y, et al. Dynamical chanracteristics of index finger in response to cold water stimulation:analysis based on Anybody platform[J]. Chinese Journal of Tissue Engineering Research, 2013, 17(22):4091-4098(in Chinese) doi: 10.3969/j.issn.2095-4344.2013.22.015
    [14] 刘书朋, 司文, 严壮志, 等.基于AnyBodyTM技术的人体运动建模方法[J].生物医学工程学进展, 2010, 31(3):131-134 doi: 10.3969/j.issn.1674-1242.2010.03.002

    Liu S P, Si W, Yan Z Z, et al. The human motions modeling and simulation based on AnyBody technology[J]. Progress in Biomedical Engineering, 2010, 31(3):131-134(in Chinese) doi: 10.3969/j.issn.1674-1242.2010.03.002
    [15] Rasmussen J, Damsgaard M, Voigt M. Muscle recruitment by the min/max criterion-a comparative numerical study[J]. Journal of Biomechanics, 2001, 34(3):409-415 doi: 10.1016/S0021-9290(00)00191-3
    [16] 梁宇航.多关节低阻尼下肢外骨骼动力学特性的研究[D].太原: 太原理工大学, 2017 http://cdmd.cnki.com.cn/Article/CDMD-10112-1017832433.htm

    Liang Y H. Study on dynamic characteristics of multi-joint low damping lower limb exoskeleton[D]. Taiyuan: Taiyuan University of Technology, 2017(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10112-1017832433.htm
    [17] 杨南, 戴士杰.基于ADAMS的人体步态运动仿真[J].机械工程与自动化, 2015(6):56-58 doi: 10.3969/j.issn.1672-6413.2015.06.023

    Yang N, Dai S J. Human body gait movement simulation based on ADAMS[J]. Mechanical Engineering & Automation, 2015(6):56-58(in Chinese) doi: 10.3969/j.issn.1672-6413.2015.06.023
    [18] Rasmussen J, Tørholm S, de Zee M. Computational analysis of the influence of seat pan inclination and friction on muscle activity and spinal joint forces[J]. International Journal of Industrial Ergonomics, 2009, 39(1):52-57 doi: 10.1016/j.ergon.2008.07.008
    [19] 国家技术监督局.GB 10000-88中国成年人人体尺寸[S].北京: 中国标准出版社, 1988

    State Bureau of Technical Supervision. GB 10000-88 Human dimensions of Chinese adults[S]. Beijing: Standards Press of China, 1988(in Chinese)
    [20] 孙金龙, 闫英霞, 张国祥.希尔肌肉方程在速滑肌肉动态分析中的应用[J].高师理科学刊, 2001, 21(3):59-62 doi: 10.3969/j.issn.1007-9831.2001.03.021

    Sun J L, Yan Y X, Zhang G X. The application of HILL's muscle function in the analysis of muscle dynamical state during speed skating[J]. Journal of Science of Teachers' College and University, 2001, 21(3):59-62(in Chinese) doi: 10.3969/j.issn.1007-9831.2001.03.021
    [21] 王劲松, 王令军, 王婷, 等.不同步速下人体步态规律的测量与研究[J].传感器与微系统, 2008, 27(9):43-45, 49 doi: 10.3969/j.issn.1000-9787.2008.09.014

    Wang J S, Wang L J, Wang T, et al. Measurement and research on human gait law at different walking speeds[J]. Transducer and Microsystem Technologies, 2008, 27(9):43-45, 49(in Chinese) doi: 10.3969/j.issn.1000-9787.2008.09.014
    [22] 韩晓建, 商李隐, 杨涌.四足机器人启动步态设计及稳定性分析[J].机械科学与技术, 2016, 35(8):1169-1175 doi: 10.13433/j.cnki.1003-8728.2016.0804

    Han X J, Shang L Y, Yang Y. Start gait design and stability analysis of a quadruped robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(8):1169-1175(in Chinese) doi: 10.13433/j.cnki.1003-8728.2016.0804
    [23] Alamoudi M, Travascio F, Onar-Thomas A, et al. The effects of different carrying methods on locomotion stability, gait spatio-temporal parameters and spinal stresses[J]. International Journal of Industrial Ergonomics, 2018, 67:81-88 doi: 10.1016/j.ergon.2018.04.012
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  672
  • HTML全文浏览量:  402
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-19
  • 刊出日期:  2019-12-05

目录

    /

    返回文章
    返回