留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热弹耦合运动斜板振动特性研究

郭旭侠 薛晓飞

郭旭侠, 薛晓飞. 热弹耦合运动斜板振动特性研究[J]. 机械科学与技术, 2019, 38(12): 1854-1860. doi: 10.13433/j.cnki.1003-8728.20190064
引用本文: 郭旭侠, 薛晓飞. 热弹耦合运动斜板振动特性研究[J]. 机械科学与技术, 2019, 38(12): 1854-1860. doi: 10.13433/j.cnki.1003-8728.20190064
Guo Xuxia, Xue Xiaofei. Study on Vibration Characteristics of Thermoelastic Coupled Moving Skew Plate[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(12): 1854-1860. doi: 10.13433/j.cnki.1003-8728.20190064
Citation: Guo Xuxia, Xue Xiaofei. Study on Vibration Characteristics of Thermoelastic Coupled Moving Skew Plate[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(12): 1854-1860. doi: 10.13433/j.cnki.1003-8728.20190064

热弹耦合运动斜板振动特性研究

doi: 10.13433/j.cnki.1003-8728.20190064
基金项目: 

宝鸡文理学院重点项目 ZK11067

陕西省自然基金项目 2013JQ1013

国家青年基金项目 11302003

详细信息
    作者简介:

    郭旭侠(1976-), 副教授, 硕士生导师, 研究方向为机械结构动力学, 674952653@qq.com

  • 中图分类号: O326

Study on Vibration Characteristics of Thermoelastic Coupled Moving Skew Plate

  • 摘要: 分析无量纲运动速度、边长比、斜角,无量纲热弹耦合因子等参数对热弹耦合运动斜薄板振动特性的影响。以运动热弹耦合运动斜薄板为研究对象,基于弹性薄板小挠度弯曲理论,建立运动微分方程,采用微分求积法进行离散建立热弹耦合运动斜板的特征方程。得到了热弹耦合运动斜板前3阶模态的无量纲复频率与运动速度之间的关系曲线。结果表明,相同条件下,第1阶模态发散失稳的临界速度随着斜板角度的增加而减小,第1阶模态的发散失稳临界速度随着无量纲热弹耦合因子的增大而增大。
  • 图  1  热弹耦合运动斜薄板模型

    图  2  θ=π/4, λ=0.2, r0=1时板的无量纲复频率与运动速度关系

    图  3  θ=π/3, λ=0.2, r0=1时板的无量纲复频率与运动速度关系

    图  4  θ= 5π/12, λ=0.2, r0=1时板的无量纲复频率与运动速度关系

    图  5  θ=π/4, λ=0.2, r0=0.8时板的无量纲复频率与运动速度关系

    图  6  θ=π/3, λ=0.2, r0=0.8时板的无量纲复频率与运动速度关系

    图  7  θ=π/3, λ=0, 0.1, 0.3, r0=0.8时板的无量纲复频率与运动速度关系

    表  1  弹性方板的前3阶固有频率与文献[17]中解的对比

    边界条件模态 对边简支-对边固支
    1 2 3
    本文解 28.956 0 54.758 9 70.055 9
    文献[17]解 28.95 54.74 69.33
    下载: 导出CSV
  • [1] Shi D Y, Liu T, Wang Q S, et al. Vibration analysis of arbitrary straight-sided quadrilateral plates using a simple first-order shear deformation theory[J]. Results in Physics, 2018, 11:201-211 doi: 10.1016/j.rinp.2018.09.001
    [2] Muhannad A W, Maher A B. A suggested analytical investigation of heat generation inducing into vibration beam subjected to harmonic loading[J]. International Journal of Energy and Environment, 2018, 9(5):499-514
    [3] 吴晓, 黄翀.功能梯度材料椭圆板的非线性热振动及屈曲[J].动力学与控制学报, 2013, 11(2):165-171 http://d.old.wanfangdata.com.cn/Periodical/dlxykzxb201302014

    Wu X, Huang C. Nonlinear thermal vibration and buckling of functionally graded elliptical plate[J]. Journal of Dynamics and Control, 2013, 11(2):165-171(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/dlxykzxb201302014
    [4] Zhou F X, Li S R, Lai Y M. Three-dimensional analysis for transient coupled thermoelastic response of a functionally graded rectangular plate[J]. Journal of Sound and Vibration, 2011, 330(16):3990-4001 doi: 10.1016/j.jsv.2011.03.015
    [5] Nayak A K, Satapathy A K. Stochastic damped free vibration analysis of composite sandwich plates[J]. Procedia Engineering, 2016, 144:1315-1324 doi: 10.1016/j.proeng.2016.05.130
    [6] 贺旭东, 吴松, 张步云, 等.热应力对机翼结构固有频率的影响分析[J].振动、测试与诊断, 2015, 35(6):1134-1139 http://d.old.wanfangdata.com.cn/Periodical/zdcsyzd201506023

    He X D, Wu S, Zhang B Y, et al. Influence of thermal stress on vibration frequencies of a wing structure[J]. Journal of Vibration, Measurement & Diagnosis, 2015, 35(6):1134-1139(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zdcsyzd201506023
    [7] 付江松, 徐鉴.四边自由矩形板横向振动的近似解及其实验[J].振动与冲击, 2018, 37(5):92-97, 107 http://d.old.wanfangdata.com.cn/Periodical/zdycj201805014

    Fu J S, Xu J. An approximate solution to transverse vibration of a rectangular plate with 4 free edges and its experimental verification[J]. Journal of Vibration and Shock, 2018, 37(5):92-97, 107(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zdycj201805014
    [8] 武吉梅, 景涛, 王砚, 等.计及弯曲刚度的印刷运动薄膜横向振动控制研究[J].应用数学和力学, 2015, 36(7):686-699 http://d.old.wanfangdata.com.cn/Periodical/yysxhlx201507002

    Wu J M, Jing T, Wang Y, et al. Transverse vibration control of moving printing membranes with bending stiffness[J]. Applied Mathematics and Mechanics, 2015, 36(7):686-699(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yysxhlx201507002
    [9] 滕兆春, 衡亚洲, 刘露.非均匀Winkler弹性地基上变厚度矩形板自由振动的DTM求解[J].计算力学学报, 2018, 35(2):216-223 http://d.old.wanfangdata.com.cn/Periodical/jslxxb201802013

    Teng Z C, Heng Y Z, Liu L. Free vibration analysis for rectangular plates with variable thickness resting on a non-uniform Winkler elastic foundation by DTM[J]. Chinese Journal of Computational Mechanics, 2018, 35(2):216-223(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jslxxb201802013
    [10] 高俊, 党发宁, 李海斌, 等.静水荷载作用下矩形薄板力学特性研究及其应用[J].应用力学学报, 2018, 35(5):1029-1036 http://d.old.wanfangdata.com.cn/Periodical/yylxxb201805017

    Gao J, Dang F N, Li H B, et al. The mechanical properties and application of rectangular thin plates under hydrostatic pressure[J]. Chinese Journal of Applied Mechanics, 2018, 35(5):1029-1036(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yylxxb201805017
    [11] 陈林, 肖伟, 刘见华, 等.基于改进傅里叶级数的矩形板薄板振动特性分析[J].噪声与振动控制, 2018, 38(5):21-26 doi: 10.3969/j.issn.1006-1355.2018.05.004

    Chen L, Xiao W, Liu J H, et al. Vibration characteristic analysis of rectangular thin plates based on improved fourier series method[J]. Noise and Vibration Control, 2018, 38(5):21-26(in Chinese) doi: 10.3969/j.issn.1006-1355.2018.05.004
    [12] Jeong K H, Jhung M J. Free vibration analysis of partially perforated circular plates[J]. Procedia Engineering, 2017, 199:182-187 doi: 10.1016/j.proeng.2017.09.230
    [13] Li C Y, Wu Y C, Chang C Y, et al. Theoretical analysis based on fundamental functions of thin plate and experimental measurement for vibration characteristics of a plate coupled with liquid[J]. Journal of Sound and Vibration, 2017, 394:545-574 doi: 10.1016/j.jsv.2017.01.023
    [14] 李天匀, 张俊, 朱翔, 等.含任意形状内开口的矩形板振动特性分析[J].华中科技大学学报, 2018, 46(11):1-6 http://d.old.wanfangdata.com.cn/Periodical/hzlgdxxb201811001

    Li T Y, Zhang J, Zhu X, et al. Vibration characteristics analysis on rectangular plates with arbitrarily-shaped cutout[J]. Journal of Huazhong University of Science and Technology, 2018, 46(11):1-6(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hzlgdxxb201811001
    [15] 严宗达, 王洪礼.热应力[M].北京:高等教育出版社, 1993

    Yan Z D, Wang H L. Thermal stress[M]. Beijing:Higher Education Press, 1993(in Chinese)
    [16] Guo X X, Wang Z M, Wang Y, et al. Analysis of the coupled thermoelastic vibration for axially moving beam[J]. Journal of Sound and Vibration, 2009, 325(3):597-608 doi: 10.1016/j.jsv.2009.03.026
    [17] Gorman D J. Free vibration analysis of rectangular plates[M]. New York:Elsevier, 1982
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  300
  • HTML全文浏览量:  209
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-17
  • 刊出日期:  2019-12-05

目录

    /

    返回文章
    返回