留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

运动链同构判别的最少步数序列法研究

刘炀 许河山 王艳玲

刘炀, 许河山, 王艳玲. 运动链同构判别的最少步数序列法研究[J]. 机械科学与技术, 2019, 38(11): 1676-1681. doi: 10.13433/j.cnki.1003-8728.20190043
引用本文: 刘炀, 许河山, 王艳玲. 运动链同构判别的最少步数序列法研究[J]. 机械科学与技术, 2019, 38(11): 1676-1681. doi: 10.13433/j.cnki.1003-8728.20190043
Liu Yang, Xu Heshan, Wang Yanling. Study on Least Step Sequence Method for Isomorphic Identification of Kinematic Chains[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(11): 1676-1681. doi: 10.13433/j.cnki.1003-8728.20190043
Citation: Liu Yang, Xu Heshan, Wang Yanling. Study on Least Step Sequence Method for Isomorphic Identification of Kinematic Chains[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(11): 1676-1681. doi: 10.13433/j.cnki.1003-8728.20190043

运动链同构判别的最少步数序列法研究

doi: 10.13433/j.cnki.1003-8728.20190043
详细信息
    作者简介:

    刘炀(1966-), 副教授, 硕士, 研究方向机械设计及理论及计算机图形学, 358331345@qq.com

  • 中图分类号: TH112;TP391

Study on Least Step Sequence Method for Isomorphic Identification of Kinematic Chains

  • 摘要: 提出用素数刻画机构构件间的运动副,并得到运动链的素数权值矩阵。在此基础上用改进的Floyd算法得到任意两个顶点间走最少步数的最小权值连乘积矩阵,并按一定规则排序。由此映射关系反映了唯一的机构运动链的相互关系,给出两个机构运动链同构的充分必要条件,建立了运动链同构判别的新方法。该方法也适用于一般的无向图的同构判别。最后通过判别实例表明该方法准确、简单且易于在计算机实现,同构判别的解决为机构综合与分析奠定了基础。
  • 图  1  六轮轮系及其拓扑图

    图  2  30杆1自由度运动链拓扑图

    图  3  两1自由度五轮轮系

    图  4  两1自由度五轮轮系的拓扑图

    图  5  两个六轮轮系

    图  6  两六轮轮系拓扑图

    图  7  两个六轮轮系的素数权值拓扑图

    图  8  两个8杆单较机构

    表  1  六轮轮系素数权值分配

    a b 重实边 c d 虚边 重虚边
    2 3 5 7 11 13 17
    下载: 导出CSV
  • [1] Ding H F, Huang Z. A new theory for the topological structure analysis of kinematic chains and its applications[J]. Mechanism and Machine Theory, 2007, 42(10):1264-1279 doi: 10.1016/j.mechmachtheory.2006.11.007
    [2] 伍星华, 聂松辉.平面运动链同构识别的全等环路法[J].机械科学与技术, 2009, 28(2):205-209 doi: 10.3321/j.issn:1003-8728.2009.02.015

    Wu X H, Nie S H. Congruent loop approach to isomorphism identification of planar kinematic chains[J]. Mechanical Science and Technology for Aerospace Engineering, 2009, 28(2):205-209(in Chinese) doi: 10.3321/j.issn:1003-8728.2009.02.015
    [3] 伍星华, 聂松辉, 李宁波.平面运动链简图自动绘制的初始回路法[J].机械科学与技术, 2009, 28(4):546-552 doi: 10.3321/j.issn:1003-8728.2009.04.028

    Wu X H, Nie S H. Li L B. An Approach of original loop to automatic sketching of planar kinematic chains[J]. Mechanical Science and Technology for Aerospace Engineering, 2009, 28(4):546-552(in Chinese) doi: 10.3321/j.issn:1003-8728.2009.04.028
    [4] 王英.运动链型综合的基本回路方法及混合驱动机构构型设计[D].太原: 中北大学, 2016

    Wang Y. Basic loop method on type synthesis of kinematic chain and configuration design of hybrid driven mechanism[D]. Taiyuan: North University of China, 2016(in Chinese)
    [5] Cubillo J P, Wan J B. Comments on mechanism kinematic chain isomorphism identification using adjacent matrices[J]. Mechanism and Machine Theory, 2005, 40(2):131-139 doi: 10.1016/j.mechmachtheory.2004.07.004
    [6] He P R, Zhang W J, Li Q, et al. A new method for detection of graph isomorphism based on the quadratic form[J]. Journal of Mechanical Design, 2003, 125(3):640-642 doi: 10.1115/1.1564574
    [7] Yan H S, Hall A S. Linkage characteristic polynomials: definitions, coefficients by inspection[J]. Journal of Mechanical Design, 1981, 103(3):578-584 doi: 10.1115/1.3254957
    [8] Uicker Jr J J, Raicu A. A method for the identification and recognition of equivalence of kinematic chains[J]. Mechanism and Machine Theory, 1975, 10(5):375-383 doi: 10.1016/0094-114X(75)90037-3
    [9] Mruthyunjaya T S, Balasubramanian H R. In quest of a reliable and efficient computational test for detection of isomorphism in kinematic chains[J]. Mechanism and Machine Theory, 1987, 22(2):131-139 doi: 10.1016/0094-114X(87)90036-X
    [10] Ambekar A G, Agrawal V P. Canonical numbering of kinematic chains and isomorphism problem: min code[J]. Mechanism and Machine Theory, 1987, 22(5):453-461 doi: 10.1016/0094-114X(87)90062-0
    [11] Tang C S, Liu T. The degree code-a new mechanism identifier[J]. Journal of Mechanical Design, 1993, 115(3):627-630 doi: 10.1115/1.2919236
    [12] Fang W E, Freudenstein F. The stratified representation of mechanisms[J]. Journal of Mechanical Design, 1990, 112(4):514-519 doi: 10.1115/1.2912640
    [13] Shin J K, Krishnamurty S. Development of a standard code for colored graphs and its application to kinematic chains[J]. Journal of Mechanical Design, 1994, 116(1): 189-196 doi: 10.1115/1.2919345
    [14] 丁华锋, 黄真.平面机构统一拓扑描述模型的建立及同构判别[J].机械工程学报, 2009, 45(3):99-103 http://d.old.wanfangdata.com.cn/Periodical/jxgcxb200903014

    Ding H F, Huang Z. Uniform topological representation model of planar mechanisms and isomorphism identification[J]. Journal of Mechanical Engineering, 2009, 45(3):99-103(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jxgcxb200903014
    [15] Barrus M D. On 2-switches and isomorphism classes[J]. Discrete Mathematics, 2012, 312(15):2217-2222 doi: 10.1016/j.disc.2012.04.014
    [16] 张清华, 陈六新, 李永红.图论及其应用[M].北京:清华大学出版社, 2013:40-95

    Zhang Q H, Chen L X, Li Y H. Graph theory with applications[M]. Beijing: Tsinghua University Press, 2013:40-95(in Chinese)
    [17] 丁玲, 路懿.运动链拓扑图的特征数组表示及同构判断[J].机械工程学报, 2010, 46(7):63-67 http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201007010

    Ding L, Lu Y. Character arrays representation and isomorphism identification of kinematic chain topology graphs[J]. Journal of Mechanical Engineering, 2010, 46(7):63-67(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201007010
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  370
  • HTML全文浏览量:  133
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-02
  • 刊出日期:  2019-11-05

目录

    /

    返回文章
    返回