留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车铣复合加工过程阻尼与切削稳定性研究

郑妍 唐小卫 樊铮 田可心 陈徐兵

郑妍, 唐小卫, 樊铮, 田可心, 陈徐兵. 车铣复合加工过程阻尼与切削稳定性研究[J]. 机械科学与技术, 2019, 38(10): 1477-1481. doi: 10.13433/j.cnki.1003-8728.20190019
引用本文: 郑妍, 唐小卫, 樊铮, 田可心, 陈徐兵. 车铣复合加工过程阻尼与切削稳定性研究[J]. 机械科学与技术, 2019, 38(10): 1477-1481. doi: 10.13433/j.cnki.1003-8728.20190019
Zheng Yan, Tang Xiaowei, Fan Zheng, Tian Kexin, Chen Xubin. Study on Process Damping and Cutting Stability in Combined Turn-milling Machining[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(10): 1477-1481. doi: 10.13433/j.cnki.1003-8728.20190019
Citation: Zheng Yan, Tang Xiaowei, Fan Zheng, Tian Kexin, Chen Xubin. Study on Process Damping and Cutting Stability in Combined Turn-milling Machining[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(10): 1477-1481. doi: 10.13433/j.cnki.1003-8728.20190019

车铣复合加工过程阻尼与切削稳定性研究

doi: 10.13433/j.cnki.1003-8728.20190019
基金项目: 

江苏省基础研究计划(自然科学基金)面上项目 BK20161473

中国博士后科学基金项目 2017M622412

详细信息
    作者简介:

    郑妍(1989-), 硕士, 研究方向为多轴数控加工动力学、工艺规划, fayandfly001@126.com

    通讯作者:

    唐小卫, 博士后研究员, txwysxf@126.com

  • 中图分类号: TH16

Study on Process Damping and Cutting Stability in Combined Turn-milling Machining

  • 摘要: 车铣复合加工具有一次装夹多工序加工、加工表面温度低及刀具磨损小等优势,非常适用于起落架等复杂回转类零件的加工。加工稳定性分析是进行参数优选、避免加工颤振的有效方法,在低速车铣复合加工过程中,过程阻尼会对稳定性边界产生显著影响。本文中分析了车铣复合加工过程阻尼的产生机理,建立了等效过程阻尼模型;在车铣复合加工动力学方程中引入过程阻尼,实现了考虑过程阻尼的车铣复合加工稳定性预测,得到低速切削区域的精确稳定性边界;并分析了过程阻尼对稳定性边界的影响规律,最后利用车铣加工切削实验验证了本文提出的考虑过程阻尼的稳定性预测模型的正确性。研究结果表明,过程阻尼会提高稳定性边界,且随着切削速度的降低提升作用愈发明显。
  • 图  1  过程阻尼的产生

    图  2  小振幅假设的侵入面积计算

    图  3  正交车铣加工示意图

    图  4  正交车铣加工动力学示意图

    图  5  稳定性边界图

    图  6  车铣复合加工实验

    图  7  车铣复合加工实验

    表  1  刀具端模态参数

    方向 频率/Hz 阻尼比 留数
    x 1291 0.06 7.24×10-5-3.11×10-4i
    y 1274 0.05 8.11×10 -5-2.66×10-4i
    下载: 导出CSV
  • [1] 唐小卫.大型轴类零件车铣加工稳定性研究与应用[D].武汉: 华中科技大学, 2017 http://cdmd.cnki.com.cn/Article/CDMD-10487-1017128561.htm

    Tang X W. Stability research and applications on turn-milling of large-sized shaft parts[D]. Wuhan: Huazhong University of Science and Technology, 2017(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10487-1017128561.htm
    [2] 徐嘉伟.起落架外筒典型特征加工工艺优化及软件开发[D].武汉: 华中科技大学, 2017 http://cdmd.cnki.com.cn/Article/CDMD-10487-1018970290.htm

    Xu J W. Machining processes optimization for typical features of landing gear sleeve and software development[D]. Wuhan: Huazhong University of Science and Technology, 2017(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10487-1018970290.htm
    [3] Uysal E, Karaguzel U, Budak E, et al. Investigating eccentricity effects in turn-milling operations[J]. Procedia CIRP, 2014, 14:176-181 doi: 10.1016/j.procir.2014.03.042
    [4] Karagüzel U, Uysal E, Budak E, et al. Analytical modeling of turn-milling process geometry, kinematics and mechanics[J]. International Journal of Machine Tools and Manufacture, 2015, 91:24-33 doi: 10.1016/j.ijmachtools.2014.11.014
    [5] Filho J M C. Prediction of cutting forces in mill turning through process simulation using a five-axis machining center[J]. The International Journal of Advanced Manufacturing Technology, 2012, 58(1-4):71-80 doi: 10.1007/s00170-011-3391-6
    [6] 汪勇.轴类零件正交车铣加工稳定性建模与分析[D].武汉: 华中科技大学, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10487-1015010300.htm

    Wang Yong. Stability modeling and analysis for orthogonal turn-milling of shaft parts[D]. Wuhan: Huazhong University of Science and Technology, 2014(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10487-1015010300.htm
    [7] Guan Y Q, Guan H Q, Wang G S, et al. Modeling and emulation of 3D dither stability in orthogonal turn-milling[J]. International Journal of Hybrid Information Technology, 2016, 9(6):231-244 doi: 10.14257/ijhit.2016.9.6.20
    [8] Comak A, Altintas Y. Dynamics and stability of turn-milling operations with varying time delay in discrete time domain[J]. Journal of Manufacturing Science and Engineering, 2018, 140(10):101013 doi: 10.1115/1.4040726
    [9] Karaguzel U, Uysal E, Budak E, et al. Effects of tool axis offset in turn-milling process[J]. Journal of Materials Processing Technology, 2016, 231:239-247 doi: 10.1016/j.jmatprotec.2015.12.020
    [10] Tlusty J, Ismail F. Special aspects of chatter in milling[J]. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1983, 105(1):24-32 doi: 10.1115/1.3269061
    [11] Ahmadi K, Ismail F. Analytical stability lobes including nonlinear process damping effect on machining chatter[J]. International Journal of Machine Tools and Manufacture, 2011, 51(4):296-308 doi: 10.1016/j.ijmachtools.2010.12.008
    [12] Eynian M, Altintas Y. Chatter stability of general turning operations with process damping[J]. Journal of Manufacturing Science and Engineering, 2009, 131(4):041005 doi: 10.1115/1.3159047
    [13] Ahmadi K, Altintas Y. Identification of machining process damping using output-only modal analysis[J]. Journal of Manufacturing Science and Engineering, 2014, 136(5):051017 doi: 10.1115/1.4027676
    [14] Wan M, Feng J, Ma Y C, et al. Identification of milling process damping using operational modal analysis[J]. International Journal of Machine Tools and Manufacture, 2017, 122:120-131 doi: 10.1016/j.ijmachtools.2017.06.006
    [15] Chiou R Y, Liang S Y. Chatter stability of a slender cutting tool in turning with tool wear effect[J]. International Journal of Machine Tools and Manufacture, 1998, 38(4):315-327 doi: 10.1016/S0890-6955(97)00079-5
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  482
  • HTML全文浏览量:  399
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-14
  • 刊出日期:  2019-10-05

目录

    /

    返回文章
    返回