留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热弹性结构全局应力约束拓扑优化设计

占金青 龙良明 刘敏

占金青, 龙良明, 刘敏. 热弹性结构全局应力约束拓扑优化设计[J]. 机械科学与技术, 2019, 38(9): 1386-1392. doi: 10.13433/j.cnki.1003-8728.20190005
引用本文: 占金青, 龙良明, 刘敏. 热弹性结构全局应力约束拓扑优化设计[J]. 机械科学与技术, 2019, 38(9): 1386-1392. doi: 10.13433/j.cnki.1003-8728.20190005
Zhan Jinqing, Long Liangming, Liu Min. Topology Optimization of Thermoelastic Structures with Global Stress Constraints[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(9): 1386-1392. doi: 10.13433/j.cnki.1003-8728.20190005
Citation: Zhan Jinqing, Long Liangming, Liu Min. Topology Optimization of Thermoelastic Structures with Global Stress Constraints[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(9): 1386-1392. doi: 10.13433/j.cnki.1003-8728.20190005

热弹性结构全局应力约束拓扑优化设计

doi: 10.13433/j.cnki.1003-8728.20190005
基金项目: 

国家自然科学基金项目 51665011

江西省自然科学基金项目 20161BAB206152

国家自然科学基金项目 51305136

详细信息
    作者简介:

    占金青(1979-), 副教授, 博士, 研究方向为柔顺机构及结构优化设计, zhan_jq@126.com

    通讯作者:

    刘敏, 讲师, 博士, lmin2016@foxmail.com

  • 中图分类号: TH122

Topology Optimization of Thermoelastic Structures with Global Stress Constraints

  • 摘要: 针对静强度失效问题,提出一种基于全局应力约束的热弹性结构拓扑优化设计方法。考虑热载荷和机械载荷共同作用下,以结构的体积最小化为目标函数,利用应力松弛方法来消除奇异解现象,采用改进的P范数方法将所有的单元应力凝聚化为一个近似等于结构最大应力的全局应力,利用全局应力作为约束,建立热弹性结构全局应力约束拓扑优化模型,采用移动近似线算法进行拓扑优化问题的求解。数值算例表明热弹性结构全局应力约束拓扑优化设计方法是有效的。随着温度载荷增大,应力约束拓扑优化获得的拓扑结构不同,最优结构的用材有所增加。
  • 图  1  热弹性结构全局应力约束拓扑优化流程图

    图  2  L型梁结构的设计域

    图  3  有、无应力约束的L型梁结构拓扑优化

    图  4  不同ΔT的L型梁结构应力约束拓扑优化

    图  5  悬臂梁结构的设计域

    图  6  有、无应力约束的悬臂梁结构拓扑优化

    图  7  不同ΔT的悬臂梁结构应力约束拓扑优化

    表  1  不同温度变化的L型梁结构拓扑优化结果

    温度变化/℃体积分数/%最大应力/MPa
    025.2275.781
    1028.6274.545
    2029.5274.896
    3030.1275.017
    下载: 导出CSV

    表  2  不同温度变化的悬臂梁结构拓扑优化结果

    温度变化/℃体积分数/%最大应力/MPa
    014.9275.422
    1016.0275.179
    3017.2275.055
    5020.8275.000
    下载: 导出CSV
  • [1] Pedersen P, Pedersen N L. Interpolation/penalization applied for strength design of 3D thermoelastic structures[J]. Structural and Multidisciplinary Optimization, 2012, 45(6):773-786 doi: 10.1007/s00158-011-0755-3
    [2] Rodrigues H, Fernandes P. A material based model for topology optimization of thermoelastic structures[J]. International Journal for Numerical Methods in Engineering, 1995, 38(12):1951-1965 doi: 10.1002/nme.1620381202
    [3] Li Q, Steven G P, Xie Y M. Thermoelastic topology optimization for problems with varying temperature fields[J]. Journal of Thermal Stresses, 2001, 24(4):347-366 doi: 10.1080/01495730151078153
    [4] 左孔天, 钱勤, 赵雨东, 等.热固耦合结构的拓扑优化设计研究[J].固体力学学报, 2005, 26(4):447-452 doi: 10.3969/j.issn.0254-7805.2005.04.011

    Zuo K T, Qian Q, Zhao Y D, et al. Research on the topology optimization about thermo-structural coupling field[J]. Acta Mechanica Solida Sinica, 2005, 26(4):447-452(in Chinese) doi: 10.3969/j.issn.0254-7805.2005.04.011
    [5] Du Y X, Luo Z, Tian Q H, et al. Topology optimization for thermo-mechanical compliant actuators using mesh-free methods[J]. Engineering Optimization, 2009, 41(8):753-772 doi: 10.1080/03052150902834989
    [6] Gao T, Xu P L, Zhang W H. Topology optimization of thermo-elastic structures with multiple materials under mass constraint[J]. Computers & Structures, 2016, 173:150-160 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3c23f1258e114eeaf186ecce632d4efe
    [7] Yang X W, Li Y M. Structural topology optimization on dynamic compliance at resonance frequency in thermal environments[J]. Structural and Multidisciplinary Optimization, 2014, 49(1):81-91 doi: 10.1007/s00158-013-0961-2
    [8] Deng J D, Yan J, Cheng G D. Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material[J]. Structural and Multidisciplinary Optimization, 2013, 47(4):583-597 doi: 10.1007/s00158-012-0849-6
    [9] Liu X J, Wang C, Zhou Y H. Topology optimization of thermoelastic structures using the guide-weight method[J]. Science China Technological Sciences, 2014, 57(5):968-979 doi: 10.1007/s11431-014-5521-5
    [10] Pedersen P, Pedersen N L. Strength optimized designs of thermoelastic structures[J]. Structural and Multidisciplinary Optimization, 2010, 42(5):681-691 doi: 10.1007/s00158-010-0535-5
    [11] Deaton J D, Grandhi R V. Stiffening of restrained thermal structures via topology optimization[J]. Structural and Multidisciplinary Optimization, 2013, 48(4):731-745 doi: 10.1007/s00158-013-0934-5
    [12] Deaton J D, Grandhi R V. Stress-based design of thermal structures via topology optimization[J]. Structural and Multidisciplinary Optimization, 2016, 53(2):253-270 doi: 10.1007/s00158-015-1331-z
    [13] 王选, 刘宏亮, 龙凯, 等.基于改进的双向渐进结构优化法的应力约束拓扑优化[J].力学学报, 2018, 50(2):385-394 http://d.old.wanfangdata.com.cn/Periodical/lxxb201802018

    Wang X, Liu H L, Long K, et al. Stress-constrained topology optimization based on improved bi-directional evolutionary optimization method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2):385-394(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/lxxb201802018
    [14] 荣见华, 葛森, 邓果, 等.基于位移和应力灵敏度的结构拓扑优化设计[J].力学学报, 2009, 41(4):518-529 doi: 10.3321/j.issn:0459-1879.2009.04.008

    Rong J H, Ge S, Deng G, et al. Structural topological optimization based on displacement and stress sensitivity analyses[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(4):518-529(in Chinese) doi: 10.3321/j.issn:0459-1879.2009.04.008
    [15] 张永红, 桑阳, 葛文杰, 等.多相材料的柔性机构拓扑优化设计[J].机械科学与技术, 2017, 36(9):1320-1326 doi: 10.13433/j.cnki.1003-8728.2017.0902

    Zhang Y H, Sang Y, Ge W J, et al. Topology optimization design of compliant mechanisms for multiphase materials[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(9):1320-1326(in Chinese) doi: 10.13433/j.cnki.1003-8728.2017.0902
    [16] Le C U, Norato J, Bruns T, et al. Stress-based topology optimization for continua[J]. Structural and Multidisciplinary Optimization, 2010, 41(4):605-620 doi: 10.1007/s00158-009-0440-y
    [17] Holmberg E, Torstenfelt B, Klarbring A. Stress constrained topology optimization[J]. Structural and Multidisciplinary Optimization, 2013, 48(1):33-47 doi: 10.1007/s00158-012-0880-7
    [18] Oest J, Lund E. Topology optimization with finite-life fatigue constraints[J]. Structural and Multidisciplinary Optimization, 2017, 56(5):1045-1059 doi: 10.1007/s00158-017-1701-9
    [19] Bruns T E, Tortorelli D A. Topology optimization of non-linear elastic structures and compliant mechanisms[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(26-27):3443-3459 doi: 10.1016/S0045-7825(00)00278-4
    [20] Svanberg K. The method of moving asymptotes-a new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2):359-373 doi: 10.1002/nme.1620240207
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  645
  • HTML全文浏览量:  350
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-20
  • 刊出日期:  2019-09-05

目录

    /

    返回文章
    返回