Experimental Study on Microbubble Drag Reduction Performance of Porous Gas Permeable Material Applied to Ship Model
-
摘要: 分别将挠性氧化铝多孔透气材料安装在船模底部、侧面、球鼻艏附近进行微气泡减阻性能试验,分析应用于船模上的减阻效果。结果表明:船底喷气时,最高达11.6%的减阻效果;喷气位置位于球鼻艏附近时的减阻效果较差,只有当喷气流量为10 L/min时,船模阻力在部分试验点小于未喷气时的阻力;喷气位置位于船侧时,由于流场边界层密度改变较大,因此,减阻效果随着船模速度与喷气流量变化波动较大。当船模速度为1.80 m/s,且船底和船侧空气流量为20 L/min、球鼻艏空气流量为10 L/min时,采用多孔透气材料船底+船侧+球鼻艏组合式喷气方式的微气泡减阻效果可达13.9%,减阻效果明显,验证了多孔透气材料应用于船模微气泡减阻的优良性。Abstract: The flexible alumina porous permeable materials were installed at the bottom, side and near the bow of the ship model; the drag reduction performance of micro-bubbles and its drag reduction effect was tested and analyzed. The results show that:the maximum drag reduction effect is 11.6% when the bottom jet is located near the bulbous bow, the drag reduction effect is poor when the jet position is near the bulbous bow; only when the jet flow rate is 10 L/min, the resistance of the ship model at some test points is less than that of the ship without jet. When the jet is located at the side of the ship, the boundary layer density of the flow field changes greatly, and the fluctuation of ship speed and jet flow rate fluctuates greatly. When the ship model speed is 1.80 m/s, the bottom and side air flow rate is 20 L/min, and the bulbous bow air flow rate is 10 L/min, the micro-bubble drag reduction effect can reach 13.9% with the combination of porous permeable material bottom and ship side and bulbous bow, and the drag reduction effect is very obvious, which verifies the feasibility of applying porous permeable material to the ship model micro-bubble drag reduction.
-
表 1 实船与船模基本尺寸
参数 实船 船模 船长/m 164.900 6.246 载重水线长/m 161.568 6.120 船宽/m 27.900 1.057 浸水面积/m2 5 795 8.314 螺旋桨直径/m 8.500 0.322 -
[1] 胡以怀, 李慧晶, 何浩.国内外船舶气泡减阻技术的研究与应用[J].船舶与海洋工程, 2017, 33(6):1-6 http://d.old.wanfangdata.com.cn/Periodical/shzc201706001Hu Y H, Li H J, He H. Research and application of ship's bubble drag reduction technologies at home and abroad[J]. Naval Architecture and Ocean Engineering, 2017, 33(6):1-6 (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/shzc201706001 [2] Kumagai I, Takahashi Y, Murai Y. Power-saving device for air bubble generation using a hydrofoil to reduce ship drag: theory, experiments, and application to ships[J]. Ocean Engineering, 2015, 95:183-194 doi: 10.1016/j.oceaneng.2014.11.019 [3] Murai Y. Frictional drag reduction by bubble injection[J]. Experiments in Fluids, 2014, 55:1773 doi: 10.1007/s00348-014-1773-x [4] Qin S J, Chu N, Yao Y, et al. Stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection[J]. Physics of Fluids, 2017, 29(3):037103 doi: 10.1063/1.4977800 [5] Pang M J, Zhang Z. Numerical investigation on turbulence drag reduction by small bubbles in horizontal channel with mixture model combined with population balance model[J]. Ocean Engineering, 2018, 162:80-97 doi: 10.1016/j.oceaneng.2018.05.034 [6] 王家楣, 蔡成法.船模摩擦阻力的一种测试方法及结果[J].武汉理工大学学报:交通科学与工程版, 2003, 27(1):4-6 http://d.old.wanfangdata.com.cn/Periodical/whjtkjdxxb200301002Wang J M, Cai C F. A testing method and results of friction resistance of ship model[J]. Journal of Wuhan University of Technology: Transportation Science & Engineering, 2003, 27(1):4-6 (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/whjtkjdxxb200301002 [7] 王家楣, 郑晓伟, 姜曼松.船舶吃水对微气泡减阻影响的水池试验研究[J].船舶工程, 2004, 26(6):9-12 doi: 10.3969/j.issn.1000-6982.2004.06.003Wang J M, Zheng X W, Jiang M S. Test research on drag reduction of ship model at different draft by microbubble in towing basin[J]. Ship Engineering, 2004, 26(6):9-12 (in Chinese) doi: 10.3969/j.issn.1000-6982.2004.06.003 [8] 王家楣, 张玲.过渡型艇微气泡减阻喷缝尺度影响数值计算[J].船舶力学, 2011, 15(6):592-597 doi: 10.3969/j.issn.1007-7294.2011.06.002Wang J M, Zhang L. Numerical calculation on the influence of the slot size of air injection on micro bubbles drag reduction for transitional craft[J]. Journal of Ship Mechanics, 2011, 15(6):592-597 (in Chinese) doi: 10.3969/j.issn.1007-7294.2011.06.002 [9] 黄衍顺, 张丽君, 王震.微气泡层减阻的边界层模型计算[J].船舶工程, 2004, 26(1):13-16 doi: 10.3969/j.issn.1000-6982.2004.01.004Huang Y S, Zhang L J, Wang Z. Calculation of microbubble sheet drag reduction by a model of boundary layer[J]. Ship Engineering, 2004, 26(1):13-16 (in Chinese) doi: 10.3969/j.issn.1000-6982.2004.01.004 [10] 黄衍顺, 王震, 王吉强.通过微气泡控制湍流边界层减阻的研究与进展[J].船舶工程, 2003, 25(1):1-5 doi: 10.3969/j.issn.1000-6982.2003.01.001Huang Y S, Wang Z, Wang J Q. Trends in research of drag reduction by micro-bubbles controlling turbulent boundary layer[J]. Ship Engineering, 2003, 25(1):1-5 (in Chinese) doi: 10.3969/j.issn.1000-6982.2003.01.001 [11] Han D F, Li Y B, Huang D B. Study of algorithms of new slender ship theory of wave resistance[J]. Journal of Marine Science and Application, 2003, 2(2):53-60 doi: 10.1007/BF02918664 [12] 李勇.船舶微气泡减阻机理研究[D].哈尔滨: 哈尔滨工程大学, 2011 http://cdmd.cnki.com.cn/Article/CDMD-10217-1012264434.htmLi Y. Mechanism research on drag reduction of ship by microbubbles[D]. Harbin: Harbin Engineering University, 2011 (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10217-1012264434.htm [13] Madavan N K, Deutsch S, Merkle C L. Reduction of turbulent skin friction by microbubbles[J]. The Physics of Fluids, 1984, 27(2):356-363 https://www.researchgate.net/publication/235068547_Reduction_of_Turbulent_Skin_Friction_by_Microbubbles [14] Yanuar, Waskito K T, Pratama S Y, et al. Comparison of microbubble and air layer injection with porous media for drag reduction on a self-propelled barge ship model[J]. Journal of Marine Science and Application, 2018, 17(2):165-172 http://d.old.wanfangdata.com.cn/Periodical/hebgcdxxb-e201802002 -