留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

切削加工表面粗糙度组合预测模型研究

鲁娟 张振坤 廖小平 马俊燕

鲁娟, 张振坤, 廖小平, 马俊燕. 切削加工表面粗糙度组合预测模型研究[J]. 机械科学与技术, 2019, 38(9): 1451-1456. doi: 10.13433/j.cnki.1003-8728.20180314
引用本文: 鲁娟, 张振坤, 廖小平, 马俊燕. 切削加工表面粗糙度组合预测模型研究[J]. 机械科学与技术, 2019, 38(9): 1451-1456. doi: 10.13433/j.cnki.1003-8728.20180314
Lu Juan, Zhang Zhenkun, Liao Xiaoping, Ma Junyan. Study on Combined Prediction Model for Surface Roughness in Milling Process[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(9): 1451-1456. doi: 10.13433/j.cnki.1003-8728.20180314
Citation: Lu Juan, Zhang Zhenkun, Liao Xiaoping, Ma Junyan. Study on Combined Prediction Model for Surface Roughness in Milling Process[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(9): 1451-1456. doi: 10.13433/j.cnki.1003-8728.20180314

切削加工表面粗糙度组合预测模型研究

doi: 10.13433/j.cnki.1003-8728.20180314
基金项目: 

广西研究生教育创新计划项目 YCBZ2017015

广西高校临海机械装备设计制造及控制重点实验室课题项目 GXLH2016ZD-06

广西自然科学基金项目 2016GXNSFBA380214

国家自然科学基金项目 51665005

详细信息
    作者简介:

    鲁娟(1988-), 博士研究生, 研究方向为智能制造和计算机仿真, lujuan3623366@163.com

    通讯作者:

    廖小平, 教授, 博士生导师, xpfeng@gxu.edu.cn

  • 中图分类号: TP391.9;TG54

Study on Combined Prediction Model for Surface Roughness in Milling Process

  • 摘要: 加工过程产生的粗糙度数据序列会包含多种特征,而单一的预测模型不能同时捕捉多种数据特征,难以提高预测精度。因此,从加工过程中粗糙度数据特征的复杂性出发,提出了一种基于支持向量机(SVM)和BP神经网络算法(BP)的组合预测模型,来同时捕捉数据的线性特征和非线性特征;在组合预测过程中为充分发挥两种预测算法的最佳性能,采用粒子群优化算法(PSO)对支持向量机的参数和BP神经网络中的权值进行优化。通过蠕墨铸铁的铣削实验,实现不同切削用量下的表面粗糙度精准预测,并与PSO-SVM、PSO-BP算法以及切削加工表面粗糙度理论模型进行对比,验证了该组合模型的优越性。
  • 图  1  组合预测模型流程图

    图  2  PSO-BP对PSO-SVM的残差预测图

    图  3  各模型预测效果图

    表  1  实验切削用量及粗糙度值

    实验组数 切削速度/ (m·min-1) 进给量/ (mm·min-1) 粗糙度实际值/μm
    1 226 180 1.409 2
    2 226 360 2.507 0
    3 226 540 3.659 0
    4 226 720 4.433 2
    5 226 900 4.120 3
    6 452 180 0.340 3
    7 452 360 0.786 7
    8 452 540 1.550 5
    9 452 720 2.382 2
    10 452 900 3.227 2
    11 678 180 0.331 8
    12 678 360 0.430 2
    13 678 540 0.557 0
    14 678 720 0.645 3
    15 678 900 0.794 0
    16 904 180 0.323 8
    17 904 360 0.529 8
    18 904 540 0.478 5
    19 904 720 0.717 3
    20 904 900 0.773 2
    下载: 导出CSV

    表  2  PSO在SVM和BP算法中的参数设

    参数名 SVM中的PSO参数值 BP中的PSO参数值
    种群数量 20 20
    迭代次数 200 100
    学习因子(c1, c2) c1=1.5
    c2=1.7
    c1=1.494 45
    c2=1.494 45
    适应度函数 均方误差EMS 均方根误差ERMS
    下载: 导出CSV

    表  3  各模型对测试样本预测值及相对误差

    样本号 表面粗糙度预测值/μm 相对误差ER/%
    PSO-SVM+PSO-BP PSO-SVM PSO-BP 理论模型 PSO-SVM+PSO-BP PSO-SVM PSO-BP 理论模型
    13 0.544 6 0.597 4 0.624 9 0.758 0 2.223 7 7.246 0 12.187 9 36.094 4
    14 0.697 5 0.597 4 0.703 5 0.945 2 8.094 5 7.429 1 9.013 1 47.866 1
    15 0.794 9 0.694 5 0.780 0 1.140 6 0.119 5 12.528 3 1.768 0 43.656 5
    16 0.323 9 0.423 9 0.333 0 0.214 1 0.030 4 30.909 5 2.834 4 33.868 3
    17 0.497 4 0.597 4 0.439 9 0.372 8 6.119 5 12.752 0 16.970 3 29.634 5
    18 0.491 8 0.578 6 0.603 1 0.515 6 2.784 2 20.916 4 31.682 3 7.755 6
    19 0.716 3 0.617 0 0.690 1 0.649 0 0.141 4 13.989 7 3.787 0 9.519 3
    20 0.773 3 0.672 9 0.698 4 0.775 8 0.010 1 12.978 2 9.670 9 0.341 4
    下载: 导出CSV

    表  4  各预测模型的评价指标计算结果

    模型 EMAP/% ERSM/%
    PSO-SVM+PSO-BP 2.440 4 2.27
    POS-SVM 14.843 6 8.56
    PSO-BP 10.989 2 7.56
    理论模型 26.092 0 19.32
    下载: 导出CSV
  • [1] Upadhyay V, Jain P K, Mehta N K. In-process prediction of surface roughness in turning of Ti-6Al-4V alloy using cutting parameters and vibration signals[J]. Measurement, 2013, 46(1):154-160 doi: 10.1016/j.measurement.2012.06.002
    [2] 孙林, 杨世元.基于最小二乘支持矢量机的成形磨削表面粗糙度预测及磨削用量优化设计[J].机械工程学报, 2009, 45(10):254-260 http://d.old.wanfangdata.com.cn/Periodical/jxgcxb200910039

    Sun L, Yang S Y. Prediction for surface roughness of profile grinding and optimization of grinding parameters based on least squares support vector machine[J]. Journal of Mechanical Engineering, 2009, 45(10):254-260(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jxgcxb200910039
    [3] Tsai Y H, Chen J C, Lou S J. An in-process surface recognition system based on neural networks in end milling cutting operations[J]. International Journal of Machine Tools and Manufacture, 1999, 39(4):583-605 doi: 10.1016/S0890-6955(98)00053-4
    [4] 刘贵杰, 巩亚东, 王宛山.基于神经网络的磨削砂轮状态的在线监测[J].东北大学学报, 2002, 23(10):984-987 doi: 10.3321/j.issn:1005-3026.2002.10.018

    Liu G J, Gong Y D, Wang W S. On-line monitoring for grinding wheel states based on neural network[J]. Journal of Northeastern University, 2002, 23(10):984-987(in Chinese) doi: 10.3321/j.issn:1005-3026.2002.10.018
    [5] 邓辉, 邓朝晖, 肖蓝湘.基于粒子群算法的钛合金高速外圆磨削参数优化[J].兵器材料科学与工程, 2017, 40(4):46-50 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bqclkxygc201704011

    Deng H, Deng Z H, Xiao L X. Optimization of high-speed cylindrical grinding parameter for titanium alloy based on particle swarm optimization[J]. Ordnance Material Science and Engineering, 2017, 40(4):46-50(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bqclkxygc201704011
    [6] Lu D W. Research on prediction method of profile grinding surface roughness based on PSO-LS SVM algorithm[J]. Advanced Materials Research, 2014, 926-930:3684-3687 doi: 10.4028/www.scientific.net/AMR.926-930.3684
    [7] 阴艳超, 丁卫刚.切削加工表面粗糙度的多维多规则云预测方法[J].机械工程学报, 2016, 52(15):204-212 http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201615027

    Yin Y C, Ding W G. A novel cloud model prediction for surface roughness based on multidimensional & multi-rules reasoning[J]. Journal of Mechanical Engineering, 2016, 52(15):204-212(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201615027
    [8] Kumar S, Batish A, Singh R, et al. A hybrid Taguchi-artificial neural network approach to predict surface roughness during electric discharge machining of titanium alloys[J]. Journal of Mechanical Science and Technology, 2014, 28(7):2831-2844 doi: 10.1007/s12206-014-0637-x
    [9] Krishna Mohana Rao G, Rangajanardhaa G, Hanumantha R D, et al. Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm[J]. Journal of Materials Processing Technology, 2009, 209(3):1512-1520 doi: 10.1016/j.jmatprotec.2008.04.003
    [10] Deris A M, Zain A M, Sallehuddin R. Hybrid GR-SVM for prediction of surface roughness in abrasive water jet machining[J]. Meccanica, 2013, 48(8):1937-1945 doi: 10.1007/s11012-013-9710-2
    [11] Sahoo P, Pratap A, Bandyopadhyay A. Modeling and optimization of surface roughness and tool vibration in CNC turning of Aluminum alloy using hybrid RSM-WPCA methodology[J]. International Journal of Industrial Engineering Computations, 2017, 8(3):385-398 http://www.growingscience.com/ijiec/Vol8/IJIEC_2016_33.pdf
    [12] Hanafi I, Khamlichi A, Cabrera F M, et al. Optimization of cutting parameters in CNC turning operation using Taguchi design of experiments[J]. Science, 2011, 2(2):79-87 https://www.researchgate.net/publication/273218742_Optimization_of_cutting_parameters_in_CNC_turning_operation_using_Taguchi_design_of_experiments
    [13] 马峰, 张华, 曹华军.面向低能耗少切削液的多目标加工参数优化[J].机械工程学报, 2017, 53(11):157-163 http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201711019

    Ma F, Zhang H, Cao H J. Multi-objective machining parameters optimization for low energy and minimum cutting fluid consumption[J]. Journal of Mechanical Engineering, 2017, 53(11):157-163(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201711019
    [14] 杨俊, 何辉波, 李华英, 等.基于切削力和表面粗糙度的干切削参数优化[J].西南大学学报, 2014, 36(12):187-192 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnnydxxb201412030

    Yang J, He H B, Li H Y, et al. Optimization of dry cutting parameters based on cutting force and surface roughness[J]. Journal of Southwest University, 2014, 36(12):187-192(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnnydxxb201412030
    [15] 周长林, 钱志升, 王勤民, 等.基于PSO-SVM方法的电源线传导泄漏信号识别与还原[J].电子与信息学报, 2018, 40(9):2206-2211 http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201809023

    Zhou C L, Qian Z S, Wang Q M, et al. Recognition and reconstruction of conduction leakage signal via power line based on PSO-SVM method[J]. Journal of Electronics & Information Technology, 2018, 40(9):2206-2211(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201809023
    [16] Rumelhart D E, McClelland J L, the PDP Research Group. Parallel distributed processing:explorations in the microstructure of cognition[M]. Cambridge MA:MIT Press, 1986
    [17] 张捍东, 陶刘送.粒子群优化BP算法在液压系统故障诊断中应用[J].系统仿真学报, 2016, 28(5):1186-1190 http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201605025

    Zhang H D, Tao L S. Application of PSO-BP algorithm in hydraulic system fault diagnosis[J]. Journal of System Simulation, 2016, 28(5):1186-1190(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201605025
    [18] 陈伟, 周曼, 叶家军, 等.建筑工程安全施工费费率测算的PSO-BP模型研究[J].中国安全科学学报, 2016, 26(5):146-151 http://d.old.wanfangdata.com.cn/Periodical/zgaqkxxb201605026

    Chen W, Zhou M, Ye J J, et al. PSO-BP modeling research on fee rate measurement of construction project safe construction cost[J]. China Safety Science Journal, 2016, 26(5):146-151(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zgaqkxxb201605026
    [19] 张建伟, 江琦, 刘轩然, 等.基于PSO-SVM算法的梯级泵站管道振动响应预测[J].农业工程学报, 2017, 33(11):75-81 doi: 10.11975/j.issn.1002-6819.2017.11.010

    Zhang J W, Jiang Q, Liu X R, et al. Prediction of vibration response for pipeline of cascade pumping station based on PSO-SVM algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(11):75-81(in Chinese) doi: 10.11975/j.issn.1002-6819.2017.11.010
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  414
  • HTML全文浏览量:  301
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-02
  • 刊出日期:  2019-09-05

目录

    /

    返回文章
    返回