留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种智能滚齿机成熟度评价方法

王星荣 阎春平 万露 曹卫东

王星荣, 阎春平, 万露, 曹卫东. 一种智能滚齿机成熟度评价方法[J]. 机械科学与技术, 2019, 38(9): 1443-1450. doi: 10.13433/j.cnki.1003-8728.20180309
引用本文: 王星荣, 阎春平, 万露, 曹卫东. 一种智能滚齿机成熟度评价方法[J]. 机械科学与技术, 2019, 38(9): 1443-1450. doi: 10.13433/j.cnki.1003-8728.20180309
Wang Xingrong, Yan Chunping, Wan Lu, Cao Weidong. A Method to Evaluate Maturity of Intelligent Hobbing Machine[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(9): 1443-1450. doi: 10.13433/j.cnki.1003-8728.20180309
Citation: Wang Xingrong, Yan Chunping, Wan Lu, Cao Weidong. A Method to Evaluate Maturity of Intelligent Hobbing Machine[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(9): 1443-1450. doi: 10.13433/j.cnki.1003-8728.20180309

一种智能滚齿机成熟度评价方法

doi: 10.13433/j.cnki.1003-8728.20180309
基金项目: 

国家自然科学基金项目 51575071

详细信息
    作者简介:

    王星荣(1993-), 硕士研究生, 研究方向为智能制造及装备、绿色制造, 1290927124@qq.com

    通讯作者:

    阎春平, 教授, 博士, ycp@cqu.edu.cn

  • 中图分类号: TG659

A Method to Evaluate Maturity of Intelligent Hobbing Machine

  • 摘要: 掌握智能滚齿机的智能化状态,改进智能滚齿机的薄弱环节,是提升滚齿机智能化程度的重要途径。通过借鉴能力成熟度模型集成技术,构建智能滚齿机成熟度模型并给出其主要特征以描述滚齿机智能化发展进程,根据滚齿机的智能特性建立智能滚齿机成熟度综合评价指标体系。在此基础上,提出一种区间层次分析法和模糊综合评价相结合的智能滚齿机成熟度评价方法,其量化结果能合理地评估智能滚齿机成熟度,直观得到滚齿机智能化的改进方向。通过对企业某台智能滚齿机的评价,验证所提方法的有效性。
  • 图  1  智能滚齿机成熟度模型

    图  2  智能滚齿机成熟度评价指标体系

    表  1  准则层各属性对目标层的重要度及权重

    p E D C I M K
    P [1.0, 1.0] [0.95, 1.2] [0.7, 0.9] [0.6, 0.8] [0.65, 0.85] [0.8, 1.05] [0.95, 1.2]
    E [1.0, 1.0] [0.75, 0.6] [0.6, 0.75] [0.8, 1.1] [0.9, 1.02] [0.85, 1.15]
    D [1.0, 1.0] [0.9, 1.25] [0.95, 1.15] [1.1, 1.3] [1.2, 1.3]
    C [1.0, 1.0] [0.9, 1.3] [1.05, 1.4] [1.25, 1.4]
    I [1.0, 1.0] [0.95, 1.2] [1.0, 1.3]
    M [1.0, 1.0] [0.95, 1.15]
    K [1.0, 1.0]
    下载: 导出CSV

    表  2  智能规划与决策能力指标层的重要度及权重

    P1 P2 P3 P4
    P1 [1.0, 1.0] [0.85, 1.05] [0.8, 1.1] [0.9, 1.05]
    P2 [1.0, 1.0] [0.95, 1.15] [0.8, 1.05]
    P3 [1.0, 1.0] [0.95, 1.2]
    P4 [1.0, 1.0]
    下载: 导出CSV

    表  3  智能滚齿机成熟度模糊综合评价表

    评价指标 权重ω 评价因素 权重ω1 指标评价等级
    V1 V2 V3 V4 V5
    智能规划与决策P 0.125 加工任务管理与规划能力P1 0.241 0.5 0.2 0.2 0.1 0
    滚齿工艺参数自主优化决策能力P2 0.251 0.4 0.3 0.1 0.1 0.1
    数控程序自动编制能力P3 0.256 0.3 0.3 0.2 0.2 0
    刀、夹具及工件自动匹配与监管能力P4 0.253 0.4 0.2 0.2 0.1 0.1
    可持续制造评估与优化E 0.123 虚拟加工E1 0.358 0.3 0.3 0.2 0.1 0.1
    云制造环境下资源优化选择E2 0.306 0.2 0.3 0.2 0.1 0.2
    生产节能调度E3 0.336 0.3 0.3 0.1 0.2 0.1
    智能检测及诊断能力D 0.167 滚齿机实时状态分析与预警D1 0.236 0.2 0.2 0.2 0.2 0.2
    知识自学习与共享学习D2 0.241 0.4 0.2 0.2 0.2 0
    设备维修维护知识库维护D3 0.282 0.3 0.2 0.2 0.1 0.2
    故障预报分析和信息化管理D4 0.231 0.3 0.4 0.2 0.1 0
    自适应优化控制能力C 0.170 负载自动检测与NC代码自动调节C1 0.184 0.2 0.3 0.3 0.1 0.1
    误差实时检测及智能补偿C2 0.213 0.3 0.3 0.2 0.1 0.1
    工件实时定位及碰撞预防控制C3 0.195 0.4 0.3 0.2 0.1 0
    辅助装置低碳运行智能控制C4 0.195 0.3 0.2 0.2 0.2 0.1
    加工过程能效监测与节能优化控制C5 0.215 0.2 0.3 0.2 0.2
    集成与互联互通能力I 0.151 智能传感器与多源信息融合能力I1 0.283 0.3 0.3 0.2 0.1 0.1
    网络设备层集成能力I2 0.245 0.3 0.2 0.2 0.2 0.1
    信息层的集成与互联互通能力I3 0.240 0.5 0.3 0.1 0.1 0
    接口开放性与互操作能力I4 0.234 0.4 0.2 0.2 0.1 0.1
    故障智能维护能力M 0.136 实时故障智能检测与诊断M1 0.253 0.4 0.3 0.1 0.1 0.1
    可靠性评估与故障智能预测预警M2 0.244 0.5 0.2 0.2 0.1 0
    故障自修复和远程维修M3 0.266 0.2 0.2 0.2 0.2 0.2
    基于3D的故障维修拆卸与组装M4 0.238 0.3 0.3 0.2 0.1 0.1
    知识智能维护能力K 0.127 知识自学习与知识共享K1 0.340 0.2 0.4 0.2 0.1 0.1
    故障诊断专家系统维护K2 0.322 0.3 0.3 0.3 0.1 0
    调整、控制及优化算法维护K3 0.340 0.4 0.3 0.1 0.1 0.1
    下载: 导出CSV
  • [1] 鄢萍, 阎春平, 刘飞, 等.智能机床发展现状与技术体系框架[J].机械工程学报, 2013, 49(21):1-10 http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201321001

    Yan P, Yan C P, Liu F, et al. Development status and technical system framework for smart machine tool[J]. Journal of Mechanical Engineering, 2013, 49(21):1-10(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201321001
    [2] 齿轮手册编委会.齿轮手册-上册[M].北京:机械工业出版社, 1990

    Gear Manual Editorial Board. Gear manual[M]. Beijing:Machinery Industry Press, 1990(in Chinese)
    [3] 张明树, 阎春平, 覃斌.基于图论和模糊TOPSIS的高速切削工艺参数优化决策[J].计算机集成制造系统, 2013, 19(11):2802-2809 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201311017

    Zhang M S, Yan C P, Qin B. High-speed cutting parameters optimization decision based on graph theory and fuzzy TOPSIS[J]. Computer Integrated Manufacturing Systems, 2013, 19(11):2802-2809(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201311017
    [4] 曹卫东, 阎春平, 郭奉民.基于成组技术和标准模板的滚齿CNC自动编程[J].计算机集成制造系统, 2015, 21(1):195-203 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201501022

    Cao W D, Yan C P, Guo F M. CNC gear hobbing automatic programming based on group technology and standard template[J]. Computer Integrated Manufacturing Systems, 2015, 21(1):195-203(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201501022
    [5] Kadir A A, Xu X, Hammerle E. Virtual machine tools and virtual machining-a technological review[J]. Robotics and Computer-Integrated Manufacturing, 2011, 27(3):494-508 doi: 10.1016/j.rcim.2010.10.003
    [6] Bruzzone A A G, Anghinolfi D, Paolucci M, et al. Energy-aware scheduling for improving manufacturing process sustainability:a mathematical model for flexible flow shops[J]. CIRP Annals, 2012, 61(1):459-462 doi: 10.1016/j.cirp.2012.03.084
    [7] 张根保, 柳剑, 王国强.基于任务的数控机床模糊可靠性分配方法[J].计算机集成制造系统, 2012, 18(4):768-774 http://d.old.wanfangdata.com.cn/Periodical/jzgcjsysj2017173565

    Zhang G B, Liu J, Wang G Q. Fuzzy reliability allocation of CNC machine tools based on task[J]. Computer Integrated Manufacturing Systems, 2012, 18(4):768-774(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jzgcjsysj2017173565
    [8] Ridwan F, Xu X. Advanced CNC system with in-process feed-rate optimisation[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(3):12-20 doi: 10.1016/j.rcim.2012.04.008
    [9] Denkena B, Dahlmann D, Damm J. Self-adjusting process monitoring system in series production[J]. Procedia CIRP, 2015, 33:233-238 doi: 10.1016/j.procir.2015.06.042
    [10] Kadashevich I, Beutner M, Karpuschewski B, et al. A novel simulation approach to determine thermally induced geometric deviations in dry gear hobbing[J]. Procedia CIRP, 2015, 31:483-488 doi: 10.1016/j.procir.2015.03.095
    [11] Klocke F, Löpenhaus C, Sari D. Process concepts for gear finish hobbing[J]. Procedia CIRP, 2016, 41:875-880 doi: 10.1016/j.procir.2015.12.099
    [12] 王秋莲, 刘飞.数控机床多源能量流的系统数学模型[J].机械工程学报, 2013, 49(7):5-12 http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201307002

    Wang Q L, Liu F. Mathematical model of multi-source energy flows for CNC machine tools[J]. Journal of Mechanical Engineering, 2013, 49(7):5-12(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201307002
    [13] 贺晓辉, 鄢萍, 张佳毅, 等.功率信息互相关法的刀具破损在线监测[J].重庆大学学报, 2011, 34(9):9-16 http://d.old.wanfangdata.com.cn/Periodical/cqdxxb201109002

    He X H, Yan P, Zhang J Y, et al. On-line tool breakage monitoring method based on power information and cross-correlation algorithm[J]. Journal of Chongqing University, 2011, 34(9):9-16(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/cqdxxb201109002
    [14] 胡林桥.网络智能滚齿机故障诊断及维护系统设计与应用研究[D].重庆: 重庆大学, 2012: 2-5, 52-53 http://cdmd.cnki.com.cn/Article/CDMD-10611-1012049456.htm

    Hu L Q. Research on design and application of fault diagnosis and maintenance system for network intelligent hobbing machine[D]. Chongqing: Chongqing University, 2012: 2-5, 52-53(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10611-1012049456.htm
    [15] 周安宁, 李文正.面向飞机协同设计的零部件成熟度评估方法[J].中国机械工程, 2013, 24(1):61-65 doi: 10.3969/j.issn.1004-132X.2013.01.013

    Zhou A N, Li W Z. Maturity degree evaluation method of components in plane cooperative design[J]. China Mechanical Engineering, 2013, 24(1):61-65(in Chinese) doi: 10.3969/j.issn.1004-132X.2013.01.013
    [16] 于秀明, 郭楠, 王程安, 等.智能制造能力成熟度模型研究[J].信息技术与标准化, 2016(5):39-42 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xxjsybzh201605010

    Yu X M, Guo N, Wang C A, et al. Research on smart manufacturing capability maturity model[J]. Information Technology & Standardization, 2016(5):39-42(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xxjsybzh201605010
    [17] Choi S S, Kim B H, Do Noh S. A diagnosis and evaluation method for strategic planning and systematic design of a virtual factory in smart manufacturing systems[J]. International Journal of Precision Engineering and Manufacturing, 2015, 16(6):1107-1115 doi: 10.1007/s12541-015-0143-9
    [18] 李孝斌, 尹超, 尹胜.云制造环境下机床装备资源特性分析与语义描述方法[J].计算机集成制造系统, 2014, 20(9):2164-2171 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201409010

    Li X B, Yin C, Yin S. Semantic description and characteristics of machine tool resources in cloud manufacturing environment[J]. Computer Integrated Manufacturing Systems, 2014, 20(9):2164-2171(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201409010
    [19] Shrouf F, Ordieres-Meré J, García-Sánchez A, et al. Optimizing the production scheduling of a single machine to minimize total energy consumption costs[J]. Journal of Cleaner Production, 2014, 67:197-207 doi: 10.1016/j.jclepro.2013.12.024
    [20] Kang H S, Lee J Y, Choi S S, et al. Smart Manufacturing:past research, present findings, and future directions[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2016, 3(1):111-128 doi: 10.1007/s40684-016-0015-5
    [21] 郝庆波, 杨兆军, 陈传海, 等.基于区间层次分析法的数控机床可靠性预计[J].吉林大学学报, 2012, 42(4):845-850 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jlgydxzrkxxb201204010

    Hao Q B, Yang Z J, Chen C H, et al. Reliability prediction for NC machine tool based on interval AHP[J]. Journal of Jilin University, 2012, 42(4):845-850(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jlgydxzrkxxb201204010
    [22] 徐玖平, 吴巍.多属性决策的理论与方法[M].北京:清华大学出版社, 2006

    Xu J P, Wu W. Multiple attribute decision making theory and methods[M]. Beijing:Tsinghua University Press, 2006(in Chinese)
    [23] 杜栋, 庞庆华.现代综合评价方法与案例精选[M].北京:清华大学出版社, 2005

    Du D, Pang Q H. Modern comprehensive evaluation methods and case selection[M]. Beijing:Tsinghua University Press, 2005(in Chinese)
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  340
  • HTML全文浏览量:  258
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-26
  • 刊出日期:  2019-09-05

目录

    /

    返回文章
    返回