留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加加速度连续有界的PTP运动轨迹规划研究

林建雄 白瑞林 王延玉

林建雄, 白瑞林, 王延玉. 加加速度连续有界的PTP运动轨迹规划研究[J]. 机械科学与技术, 2019, 38(8): 1250-1256. doi: 10.13433/j.cnki.1003-8728.20180303
引用本文: 林建雄, 白瑞林, 王延玉. 加加速度连续有界的PTP运动轨迹规划研究[J]. 机械科学与技术, 2019, 38(8): 1250-1256. doi: 10.13433/j.cnki.1003-8728.20180303
Lin Jianxiong, Bai Ruilin, Wang Yanyu. Exploring Jerk Bounded and Continuous PTP Motion Trajectory Planning[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(8): 1250-1256. doi: 10.13433/j.cnki.1003-8728.20180303
Citation: Lin Jianxiong, Bai Ruilin, Wang Yanyu. Exploring Jerk Bounded and Continuous PTP Motion Trajectory Planning[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(8): 1250-1256. doi: 10.13433/j.cnki.1003-8728.20180303

加加速度连续有界的PTP运动轨迹规划研究

doi: 10.13433/j.cnki.1003-8728.20180303
基金项目: 

江苏高校优势学科建设工程项目(PAPD)与江苏省产学研前瞻性联合研究项目 BY2015019-38

详细信息
    作者简介:

    林建雄(1992-), 硕士研究生, 研究方向为机器人控制技术, 18352537364@163.com

    通讯作者:

    白瑞林, 教授, 博士生导师, 1058987274@qq.com

  • 中图分类号: TG156

Exploring Jerk Bounded and Continuous PTP Motion Trajectory Planning

  • 摘要: 针对SCARA机器人高速PTP运动时的轨迹跟随误差和力矩突变问题,提出两种关节空间加加速度连续有界的PTP运动轨迹规划方法。分别通过关节空间的九次多项式和三角函数两种形式进行PTP轨迹规划,保证规划的轨迹速度、加速度在限定范围内,加加速度值连续且有界。实验表明,相比较梯形速度曲线,三角函数和9次多项式的PTP轨迹规划分别将关节空间轨迹跟随误差降低了0.16°和0.33°,轨迹跟随的定位时间明显减小,关节驱动力矩的突变、振荡情况得到有效的改善。
  • 图  1  9次多项式轨迹规划曲线

    图  2  三角函数轨迹规划曲线

    图  3  实验装置

    图  4  实验点位示意

    图  5  关节1轨迹跟随曲线

    图  6  关节1轨迹跟随误差曲线

    图  7  关节1驱动力矩曲线

    图  8  关节2轨迹跟随曲线

    图  9  关节2轨迹跟随误差曲线

    图  10  关节2驱动力矩曲线

    表  1  关节1轨迹规划性能对比

    轨迹规划方式 给定时间/s 定位时间/s 跟随误差/(°)
    梯形速度曲线 0.498 0.042 4.30
    三角函数曲线 0.525 0.018 4.14
    9次多项式曲线 0.540 0.018 3.97
    下载: 导出CSV

    表  2  关节2轨迹规划性能对比

    轨迹规划方式 给定时间/s 定位时间/s 跟随误差/(°)
    梯形速度曲线 0.498 0.03 2.39
    三角函数曲线 0.528 0.09 2.30
    9次多项式曲线 0.540 0.06 2.21
    下载: 导出CSV
  • [1] Macfarlane S, Croft E A. Design of jerk bounded trajectories for online industrial robot applications[C]//Proceedings of IEEE International Conference on Robotics and Automation. Seoul, South Korea: IEEE, 2001: 979-984
    [2] Macfarlane S, Croft E A. Jerk-bounded manipulator trajectory planning:design for real-time applications[J]. IEEE Transactions on Robotics and Automation, 2003, 19(1):42-52 doi: 10.1109/TRA.2002.807548
    [3] Lu S T, Zhao J D, Jiang L, et al. Time-jerk optimal trajectory planning of a 7-DOF redundant robot[J]. Turkish Journal of Electrical Engineering & Computer Sciences, 2017, 25:4211-4222
    [4] 张斌.基于多约束的机器人关节空间轨迹规划[J].机械工程学报, 2011, 47(21):1-6 http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201121001

    Zhang B. Joint-space trajectory planning for robots under multiple constraints[J]. Journal of Mechanical Engineering, 2011, 47(21):1-6(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201121001
    [5] Broqueère X, Sidobre D, Nguyen K. From motion planning to trajectory control with bounded jerk for service manipulator robots[C]//Proceedings of 2010 IEEE International Conference on Robotics and Automation. Anchorage, AK, USA: IEEE, 2010: 4505-4510
    [6] Ata A A, El Zawawi A, Razek M A E. Jerk bounded trajectory planning for non-holonomic mobile manipulator[C]//Proceedings of the 27th European Conference on Modelling and Simulation. Aalesund, Norway: ECMS, 2013: 733-738
    [7] 刘松国, 朱世强, 吴文祥.具有运动时间约束的机械手最优平滑轨迹规划[J].电机与控制学报, 2009, 13(6):897-902 doi: 10.3969/j.issn.1007-449X.2009.06.020

    Liu S G, Zhu S Q, Wu W X. Smoothness-optimal trajectory planning method with constraint on traveling time for manipulators[J]. Electric Machines and Control, 2009, 13(6):897-902(in Chinese) doi: 10.3969/j.issn.1007-449X.2009.06.020
    [8] Liu H S, Lai X B, Zhu S Q, et al. Jerk-bounded and-continuous trajectory planning for a 6-DOF serial robot manipulator with revolute joints[C]//中国自动化学会控制理论专业委员会C卷.烟台: 中国自动化学会控制理论专业委员会, 2011: 498-502
    [9] Petrinec K, Kovacic Z. Trajectory planning algorithm based on the continuity of jerk[C]//Proceedings of the Mediterranean Conference on Control & Automation. Athens, Greece: IEEE, 2007: 1-5
    [10] Konjević B, Punčec M, Kovačić Z. Two approaches to bounded jerk trajectory planning[C]//Proceedings of the 201212th IEEE International Workshop on Advanced Motion Control. Sarajevo, Bosnia-Herzegovina: IEEE, 2012: 1-7
    [11] Porawagama C D, Munasinghe S R. Reduced jerk joint space trajectory planning method using 5-3-5 spline for robot manipulators[C]//Proceedings of the 7th International Conference on Information and Automation for Sustainability. Colombo, Sri Lanka: IEEE, 2015: 1-6
    [12] Zanotto V, Gasparetto A, Lanzutti A, et al. Experimental validation of minimum time-jerk algorithms for industrial robots[J]. Journal of Intelligent & Robotic Systems, 2011, 64(2):197-219 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6025eef1e14b15d50bf7857996d3d994
    [13] Yang J, Wang H S, Chen W D, et al. Time-jerk optimal trajectory planning for robotic manipulators[C]//Proceedings of 2013 IEEE International Conference on Robotics and Biomimetics. Shenzhen, China: IEEE, 2013: 2257-2262
    [14] Ghazaei A M M, Robertsson A, Johansson R. Online minimum-jerk trajectory generation[C]//Proceedings of 2015 IMA Conference on Mathematics of Robotics. Oxford, United Kingdom: Lund University, 2015
    [15] 方健, 宋宇, 朱茂飞, 等.基于时间最优的码垛机器人轨迹规划[J].控制工程, 2018, 25(1):93-99 http://d.old.wanfangdata.com.cn/Periodical/jczdh201801016

    Fang J, Song Y, Zhu M F, et al. Time-optimal trajectory planning for palletizing robots[J]. Control Engineering of China, 2018, 25(1):93-99(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jczdh201801016
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  687
  • HTML全文浏览量:  312
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-30
  • 刊出日期:  2019-08-05

目录

    /

    返回文章
    返回