留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温环境船舶基座振动功率流特性研究

朱越 吴乙万 白鸿柏 邵一川 张培林

朱越, 吴乙万, 白鸿柏, 邵一川, 张培林. 高温环境船舶基座振动功率流特性研究[J]. 机械科学与技术, 2019, 38(8): 1289-1295. doi: 10.13433/j.cnki.1003-8728.20180295
引用本文: 朱越, 吴乙万, 白鸿柏, 邵一川, 张培林. 高温环境船舶基座振动功率流特性研究[J]. 机械科学与技术, 2019, 38(8): 1289-1295. doi: 10.13433/j.cnki.1003-8728.20180295
Zhu Yue, Wu Yiwan, Bai Hongbai, Shao Yichuan, Zhang Peilin. Vibration Power Flow Characteristics of Ship's Foundation in High-temperature Environment[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(8): 1289-1295. doi: 10.13433/j.cnki.1003-8728.20180295
Citation: Zhu Yue, Wu Yiwan, Bai Hongbai, Shao Yichuan, Zhang Peilin. Vibration Power Flow Characteristics of Ship's Foundation in High-temperature Environment[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(8): 1289-1295. doi: 10.13433/j.cnki.1003-8728.20180295

高温环境船舶基座振动功率流特性研究

doi: 10.13433/j.cnki.1003-8728.20180295
详细信息
    作者简介:

    朱越(1994-), 硕士研究生, 研究方向为振动与噪声控制, 有限元技术, zhuyue19940920@126.com

    通讯作者:

    吴乙万, 讲师, 硕士生导师, wuyiwan@fzu.edu.cn

  • 中图分类号: U661.44

Vibration Power Flow Characteristics of Ship's Foundation in High-temperature Environment

  • 摘要: 船舶设备基座常工作于高温环境下,但在设计中并未考虑温度的影响。通过对Abaqus软件二次开发实现功率流计算功能,并以功率流作为评价指标,采用不同激励方案对不同温度条件、肘板厚度、肘板间距的设备基座进行研究。结果表明,肘板厚度和肘板间距在各阶固有频率处对基座纵向传递功率流影响并不一致;低阶固有频率处温度上升将会改变肘板厚度对功率流的影响趋势;高阶固有频率处温度升高加剧功率流的波动程度且使功率流变化更为复杂。
  • 图  1  平板结构内力(力矩)与位移

    图  2  功率流计算流程图

    图  3  验证算例的功率流矢量图

    图  4  钢基座初始结构参数

    图  5  基座有限元模型及载荷、边界条件布局

    图  6  原基座功率流曲线

    图  7  基座功率流随肘板间距变化

    图  8  基座功率流随肘板厚度变化

    表  1  45钢的热物理性质

    温度t/℃ 杨氏模量E/GPa 热膨胀系数α/℃
    20 210 11.59×10-6
    100 207 11.59×10-6
    200 202 12.32×10-6
    300 196 13.09×10-6
    下载: 导出CSV

    表  2  激励方案

    激励方案 具体方式
    1 单点激励, 单位力, 激励位置为点2
    2 单点激励, 单位力, 激励位置为点1
    3 多点激励(6个点), 各点均施加单位力
    4 面板上表面施加均布载荷, 7.29 Pa
    下载: 导出CSV

    表  3  原基座固有频率及振型

    阶数 固有频率/Hz 振型
    1 303.8 整体扭转
    2 475.5 整体弯曲
    3 648.5 连接板扭转
    4 659.0 连接板扭转
    5 768.5 连接板弯曲
    6 788.8 连接板弯曲
    7 792.5 连接板及腹板扭曲
    8 795.30 整体局部扭曲
    9 814.04 整体局部扭曲
    10 831.54 整体局部扭曲
    11 837.86 整体局部扭曲
    12 860.27 整体局部扭曲
    下载: 导出CSV
  • [1] 吕林华, 杨德庆.船舶钢-复合材料组合基座减振设计方法分析[J].上海交通大学学报, 2012, 46(8):1196-1202 http://www.cnki.com.cn/Article/CJFDTotal-SHJT201208004.htm

    Lü L H, Yang D Q. Study on vibration reduction design of steel-composite materials hybrid mounting for ships[J]. Journal of Shanghai Jiaotong University, 2012, 46(8):1196-1202(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-SHJT201208004.htm
    [2] 张相闻, 杨德庆, 吴广明.综合考虑减振与抗冲击性能的复合基座设计方法[J].振动与冲击, 2016, 35(20):130-136 http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201620021.htm

    Zhang X W, Yang D Q, Wu G M. A vibration and shock isolation synthesis design method for hybrid base[J]. Journal of Vibration and Shock, 2016, 35(20):130-136(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201620021.htm
    [3] 秦浩星, 杨德庆, 张相闻.负泊松比声学超材料基座的减振性能研究[J].振动工程学报, 2017, 30(6):1012-1021 http://d.old.wanfangdata.com.cn/Periodical/zdgcxb201706015

    Qin H X, Yang D Q, Zhang X W. Vibration reduction of auxetic acoustic metamaterial mount[J]. Journal of Vibration Engineering, 2017, 30(6):1012-1021(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zdgcxb201706015
    [4] 吴秉鸿, 张相闻, 杨德庆.负泊松比超材料隔振基座的实船应用分析[J].船舶工程, 2018, 40(2):56-62 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cbgc201802011

    Wu B H, Zhang X W, Yang D Q. Real ship application analysis of vibration isolation base made by auxetic metamaterials[J]. Ship Engineering, 2018, 40(2):56-62(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cbgc201802011
    [5] 刘林波, 温华兵, 吴晨晖, 等.船舶基座中复合减振结构应用实验研究[J].舰船科学技术, 2015, 37(10):47-51 doi: 10.3404/j.issn.1672-7649.2015.10.010

    Liu L B, Wen H B, Wu C H, et al. Application and experimental research on composite vibration reduction structure of ship pedestal[J]. Ship Science and Technology, 2015, 37(10):47-51(in Chinese) doi: 10.3404/j.issn.1672-7649.2015.10.010
    [6] 李磊鑫, 刘朝骏, 陈炉云.船舶基座阻尼材料敷设优化及实验研究[J].中国舰船研究, 2017, 12(6):86-91 doi: 10.3969/j.issn.1673-3185.2017.06.013

    Li L X, Liu C J, Chen L Y. Ship mounting structure damping material optimization distribution and experimental study[J]. Chinese Journal of Ship Research, 2017, 12(6):86-91(in Chinese) doi: 10.3969/j.issn.1673-3185.2017.06.013
    [7] Khun M S, Lee H P, Lim S P. Structural intensity in plates with multiple discrete and distributed spring-dashpot systems[J]. Journal of Sound and Vibration, 2003, 276(3-5):627-648 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7da4bad42ec028cc6a750f2769a04713
    [8] Xu X D, Lee H P, Wang Y Y, et al. The energy flow analysis in stiffened plates of marine structures[J]. Thin-Walled Structures, 2004, 42(7):979-994 doi: 10.1016/j.tws.2004.03.006
    [9] 葛萌萌, 王威, 陈炉云.基于功率流灵敏度的结构减振优化研究[J].武汉理工大学学报, 2016, 40(1):136-139, 144 http://d.old.wanfangdata.com.cn/Periodical/whjtkjdxxb201601028

    Ge M M, Wang W, Chen L Y. Vibration reduction optimization based on structural power flow sensitivity[J]. Journal of Wuhan University of Technology, 2016, 40(1):136-139, 144(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/whjtkjdxxb201601028
    [10] Gavrić L, Pavić G. A finite element method for computation of structural intensity by the normal mode approach[J]. Journal of Sound and Vibration, 1993, 164(1):29-43 doi: 10.1006/jsvi.1993.1194
    [11] Petrone G, De Vendittis M, De Rosa S, et al. Numerical and experimental investigations on structural intensity in plates[J]. Composite Structures, 2016, 140:94-105 doi: 10.1016/j.compstruct.2015.12.034
    [12] 向玲, 郑水清, 高雪媛.基于功率流的瞬态响应分析及能量波的可视化研究[J].振动与冲击, 2017, 36(14):142-146 http://d.old.wanfangdata.com.cn/Periodical/zdycj201714024

    Xiang L, Zheng S Q, Gao X Y. Transient response analysis based on the power flow and the visualization of energy wave[J]. Journal of Vibration and Shock, 2017, 36(14):142-146(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zdycj201714024
    [13] 张冠军, 李天匀, 朱翔.偏心圆柱薄壳输入功率流特性研究[J].振动与冲击, 2018, 37(1):32-39 http://d.old.wanfangdata.com.cn/Periodical/zdycj201801006

    Zhang G J, Li T Y, Zhu X. Input power flow characteristics of thin eccentric cylindrical shells[J]. Journal of Vibration and Shock, 2018, 37(1):32-39(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zdycj201801006
    [14] 温华兵.船舶振动噪声预报与结构声学设计[M].北京:国防工业出版社, 2015:165-170

    Wen H B. Vibration and noise prediction and structural acoustic design of ship[M]. Beijing:National Defense Industry Press, 2015:165-170(in Chinese)
    [15] 伍先俊, 程广利, 朱石坚.最小振动功率流隔振系统ANSYS优化设计[J].武汉理工大学学报, 2005, 29(2):186-189 doi: 10.3963/j.issn.2095-3844.2005.02.007

    Wu X J, Cheng G L, Zhu S J. Isolation system optimization by ANSYS for minimizing vibration power flow[J]. Journal of Wuhan University of Technology, 2005, 29(2):186-189(in Chinese) doi: 10.3963/j.issn.2095-3844.2005.02.007
    [16] Li Y J, Lai J C S. Prediction of surface mobility of a finite plate with uniform force excitation by structural intensity[J]. Applied Acoustics, 2000, 60(3):371-383 doi: 10.1016/S0003-682X(99)00043-2
    [17] Ihlenburg F, Babuš ka I. Finite element solution of the Helmholtz equation with high wave number part Ⅰ:the h-version of the FEM[J]. Computers & Mathematics with Applications, 1995, 30(9):9-37 https://www.onacademic.com/detail/journal_1000034577328510_5d43.html
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  363
  • HTML全文浏览量:  154
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-09
  • 刊出日期:  2019-08-05

目录

    /

    返回文章
    返回