留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双稳态振动能量发电系统脉冲激励响应研究

刘丽兰 吴子英 朱国栋

刘丽兰, 吴子英, 朱国栋. 双稳态振动能量发电系统脉冲激励响应研究[J]. 机械科学与技术, 2019, 38(8): 1157-1164. doi: 10.13433/j.cnki.1003-8728.20180286
引用本文: 刘丽兰, 吴子英, 朱国栋. 双稳态振动能量发电系统脉冲激励响应研究[J]. 机械科学与技术, 2019, 38(8): 1157-1164. doi: 10.13433/j.cnki.1003-8728.20180286
Liu Lilan, Wu Ziying, Zhu Guodong. Research on Dynamic Response of Bistable Vibration Energy Power Generation System Excited by Impulse[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(8): 1157-1164. doi: 10.13433/j.cnki.1003-8728.20180286
Citation: Liu Lilan, Wu Ziying, Zhu Guodong. Research on Dynamic Response of Bistable Vibration Energy Power Generation System Excited by Impulse[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(8): 1157-1164. doi: 10.13433/j.cnki.1003-8728.20180286

双稳态振动能量发电系统脉冲激励响应研究

doi: 10.13433/j.cnki.1003-8728.20180286
基金项目: 

国家自然科学基金项目 11572243

详细信息
    作者简介:

    刘丽兰(1979-), 副教授, 博士, 研究方向为机电系统动力学理论及控制, liulilans@163.com

  • 中图分类号: O322

Research on Dynamic Response of Bistable Vibration Energy Power Generation System Excited by Impulse

  • 摘要: 将双稳态振动发电系统与单自由度质量弹簧系统串联,建立了两自由度双稳态振动能量发电系统的力学模型和控制方程,借助数值仿真分析了矩形脉冲和半正弦脉冲激励的幅值和占空比对该发电系统动态响应的影响。绘制了两种脉冲激励下发电系统输出功率与非线性刚度比的关系曲线,得到了较大输出功率下的最佳非线性刚度比,并通过改变发电系统的质量比和调频比,分别获得了矩形和半正弦脉冲激励下发电系统可产生较大输出功率的结构参数配置范围。
  • 图  1  两自由度双稳态发电系统力学模型及外接电路

    图  2  矩形脉冲信号波形

    图  3  半正弦脉冲信号波形

    图  4  矩形脉冲信号频域响应

    图  5  半正弦脉冲信号频域响应

    图  6  随脉冲激励幅值变化时主系统的时域图与相图

    图  7  随脉冲激励占空比变化时主系统的时域图与相图

    图  8  发电系统输出功率随非线性刚度比变化的关系

    图  9  矩形脉冲激励下的输出功率

    图  10  参数配置区间外系统响应

    图  11  参数配置区间内系统响应

    图  12  半正弦脉冲激励下的输出功率

    图  13  配置区间内外系统响应

  • [1] Asadi E, Askari H, Khamesee M B, et al. High frequency nano electromagnetic self-powered sensor:concept, modelling and analysis[J]. Measurement, 2017, 107:31-40 doi: 10.1016/j.measurement.2017.04.019
    [2] Alevras P, Theodossiades S, Rahnejat H. Broadband energy harvesting from parametric vibrations of a class of nonlinear mathieu systems[J]. Applied Physics Letters, 2017, 110(23):233901 doi: 10.1063/1.4984059
    [3] Yildirim T, Ghayesh M H, Li W H, et al. Design and development of a parametrically excited nonlinear energy harvester[J]. Energy Conversion and Management, 2016, 126:247-255 doi: 10.1016/j.enconman.2016.06.080
    [4] Amirtharajah R, Chandrakasan A P. Self-powered signal processing using vibration-based power generation[J]. IEEE Journal of Solid-State Circuits, 1998, 33(5):687-695 doi: 10.1109/4.668982
    [5] El-Hami M, Glynne-Jones P, White N M, et al. Design and fabrication of a new vibration-based electromechanical power generator[J]. Sensors and Actuators A:Physical, 2001, 92(1-3):335-342 doi: 10.1016/S0924-4247(01)00569-6
    [6] Roundy S, Wright P K, Rabaey J. A study of low level vibrations as a power source for wireless sensor nodes[J]. Computer Communications, 2003, 26(11):1131-1144 doi: 10.1016/S0140-3664(02)00248-7
    [7] Cheng Y K, Wu N, Wang Q. An efficient piezoelectric energy harvester with frequency self-tuning[J]. Journal of Sound and Vibration, 2017, 396:69-82 doi: 10.1016/j.jsv.2017.02.036
    [8] Firoozy P, Khadem S E, Pourkiaee S M. Broadband energy harvesting using nonlinear vibrations of a magnetopiezoelastic cantilever beam[J]. International Journal of Engineering Science, 2017, 111:113-133 doi: 10.1016/j.ijengsci.2016.11.006
    [9] Manevitch L I, Sigalov G, Romeo F, et al. Dynamics of a linear oscillator coupled to a bistable light attachment:analytical study[J]. Journal of Applied Mechanics, 2013, 81(4):041011 doi: 10.1115/1.4025150
    [10] Hosseinloo A H, Turitsyn K. Non-resonant energy harvesting via an adaptive bistable potential[J]. Smart Material Structures, 2016, 25(1):015010 doi: 10.1088/0964-1726/25/1/015010
    [11] Kumar K A, Ali S F, Arockiarajan A. Piezomagnetoelastic broadband energy harvester:nonlinear modeling and characterization[J]. European Physical Journal Special Topics, 2015, 224(14-15):2803-2822 doi: 10.1140/epjst/e2015-02590-8
    [12] 吴子英, 牛峰琦, 刘蕊, 等.有色噪声激励下双稳态电磁式振动能量捕获器动力学特性研究[J].应用数学和力学, 2017, 38(5):570-580 http://d.old.wanfangdata.com.cn/Periodical/yysxhlx201705008

    Wu Z Y, Niu F Q, Liu R, et al. Dynamic characteristics of bistable electromagnetic vibration energy harvesters under colored noise excitation[J]. Applied Mathematics and Mechanics, 2017, 38(5):570-580(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yysxhlx201705008
    [13] Jung S M, Yun K S. Energy-harvesting device with mechanical frequency-up conversion mechanism for increased power efficiency and wideband operation[J]. Applied Physics Letters, 2010, 96(11):111906 doi: 10.1063/1.3360219
    [14] Karami M A, Inman D J. Controlled buckling of piezoelectric beams for direct energy harvesting from passing vehicles[C]//Proceedings of ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Chicago, Illinois, USA: ASME, 2012: 1231-1236.
    [15] 蓝春波, 秦卫阳.带碰撞双稳态压电俘能系统的俘能特性研究[J].物理学报, 2015, 64(21):210501 doi: 10.7498/aps.64.210501

    Lan C B, Qin W Y. Vibration energy harvesting from a piezo electric bistable system with two symmetric stops[J]. Acta Physica Sinica, 2015, 64(21):210501(in Chinese) doi: 10.7498/aps.64.210501
  • 加载中
图(13)
计量
  • 文章访问数:  817
  • HTML全文浏览量:  409
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-03
  • 刊出日期:  2019-08-05

目录

    /

    返回文章
    返回