Variable Universe Adaptive Fuzzy PID Control of Active Suspension
-
摘要: 为提高汽车行驶平顺性和乘坐舒适性,提出一种基于变论域理论的自适应模糊PID汽车主动悬架控制策略,将自适应模糊PID和变论域的在线调整整合在一起,采用变论域模糊控制实现控制系统输入输出论域的自整定,提高控制精度;采用自适应模糊PID控制,提高系统的动、静态特性,形成更优的悬架控制方法。研究结果表明,变论域自适应模糊PID控制主动悬架较传统模糊控制以及模糊PID控制的主动悬架能够更有效的克服路面冲击,减少汽车垂直方向的振动,进一步提高汽车行驶平顺性和乘坐舒适性。Abstract: In order to improve the riding performance and comfort of a vehicle, an adaptive fuzzy PID control strategy for its active suspension based on the variable universe theory is proposed. The adaptive fuzzy PID control and on-line adjustment of variable universe are integrated. The fuzzy PID control based on the variable universe theory realizes the self-tuning of the I/O domain of the control system and improves the control accuracy. The adaptive fuzzy PID control is adopted to improve the dynamic and static characteristics of the control system and form a better suspension control method. The research results show that the variable universe adaptive fuzzy PID control of the active suspension can overcome road impact more effectively than the traditional fuzzy control and the fuzzy PID control active suspension, reducing the vertical vibration of the vehicle and further improving the riding performance and comfort of the vehicle.
-
Key words:
- active suspension /
- variable universe /
- adaptive fuzzy PID control /
-
表 1 α1模糊控制规则表
e ec NB NM NS ZO PS PM PB NB PB PB PM PM PS PS ZO NM PB PB PM PM PS ZO ZO NS PM PM PM PS ZO NS NM ZO PS PS PS ZO NS NM NM PS PS PS ZO NS NS NM NM PM ZO ZO NS NM NM NM NB PB ZO NS NS NM NM NB NB 表 2 KP模糊控制规则表
e ec NB NM NS ZO PS PM PB NB PB PB PM PM PS ZO ZO NM PB PB PM PS PS ZO NS NS PM PM PM PS ZE NS NS ZO PM PM PM PS ZE NS NS PS PS PS ZO NS NS NM NM PM PS ZO NS NM NM NM NB PB ZO ZO NM NM NM NB NB 表 3 不同控制方法下悬架的性能
性能 均方根值 被动悬架 模糊控制 模糊PID控制 变论域自适应模糊PID控制 垂直速度/(m·s-1) 0.033 77 0.024 31 0.012 71 0.009 151 垂直加速度/(m·s-2) 0.317 4 0.262 7 0.202 6 0.179 3 车轮动载荷/(N·s-1) 84.26 74.82 70.23 63.18 -
[1] 高远, 范健文, 潘盛辉, 等.汽车非线性主动悬架系统的分数阶模糊控制[J].中国机械工程, 2015, 26(10):1403-1408 doi: 10.3969/j.issn.1004-132X.2015.10.023Gao Y, Fan J W, Pan S H, et al. Fractional-order fuzzy control method for vehicle nonlinear active suspension[J]. China Mechanical Engineering, 2015, 26(10):1403-1408(in Chinese) doi: 10.3969/j.issn.1004-132X.2015.10.023 [2] Hu X M, Li W L. Research on the fuzzy control for vehicle semi-active suspension[J]. Advanced Materials Research, 2013, 683:716-719 doi: 10.4028/www.scientific.net/AMR.683 [3] 柴牧, 董恩国, 李振兴.汽车主动悬架的模糊PID控制策略[J].机械设计, 2013, 30(5):1-4 http://d.old.wanfangdata.com.cn/Periodical/jxsj201305001Chai M, Dong E G, Li Z X. Research on fuzzy-PID control theory of vehicle active suspension[J]. Journal of Machine Design, 2013, 30(5):1-4(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jxsj201305001 [4] 么鸣涛, 曹锋, 阙瑞义, 等.考虑汽车悬架动挠度的模糊PID控制[J].北京理工大学学报, 2016, 36(9):929-934 http://d.old.wanfangdata.com.cn/Periodical/bjlgdxxb201609009Yao M T, Cao F, Que R Y, et al. Fuzzy PID control considering vehicular suspension dynamic deflection[J]. Transactions of Beijing Institute of Technology, 2016, 36(9):929-934(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/bjlgdxxb201609009 [5] 李伟平, 柳超, 张利轩, 等.模糊PID控制在磁流变半主动悬架中的应用[J].机械科学与技术, 2014, 33(12):1902-1906 http://journals.nwpu.edu.cn/jxkxyjs/CN/abstract/abstract4794.shtmlLi W P, Liu C, Zhang L X, et al. Application of fuzzy PID control in vehicle semi-active suspension system with magnetorhelogical damper[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(12):1902-1906(in Chinese) http://journals.nwpu.edu.cn/jxkxyjs/CN/abstract/abstract4794.shtml [6] 李伟平, 柳超, 张利轩, 等.自适应模糊控制在磁流变半主动悬架中的应用[J].机械科学与技术, 2014, 33(11):1708-1713 http://journals.nwpu.edu.cn/jxkxyjs/CN/abstract/abstract4427.shtmlLi W P, Liu C, Zhang L X, et al. Application of adaptive fuzzy control in vehicle semi-active suspension system with magnetorhelogical damper[J]. Mechanical Science and Technology For Aerospace Engineering, 2014, 33(11):1708-1713(in Chinese) http://journals.nwpu.edu.cn/jxkxyjs/CN/abstract/abstract4427.shtml [7] 陈学文, 张衍成, 张玉蛟, 等.车辆座椅悬架自适应模糊PID控制及仿真[J].机械科学与技术, 2014, 33(5):776-780 http://journals.nwpu.edu.cn/jxkxyjs/CN/abstract/abstract4966.shtmlChen X W, Zhang Y C, Zhang Y J, et al. Research on adaptive fuzzy-PID control and simulation of vehicle seat suspension[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(5):776-780(in Chinese) http://journals.nwpu.edu.cn/jxkxyjs/CN/abstract/abstract4966.shtml [8] 柳江, 林晨, 叶明, 等.馈能悬架变论域模糊控制[J].上海交通大学学报, 2016, 50(8):1139-1143, 1151 http://d.old.wanfangdata.com.cn/Periodical/shjtdxxb201608001Liu J, Lin C, Ye M, et al. Variable universe fuzzy control of energy-regenerative suspension[J]. Journal of Shanghai Jiao Tong University, 2016, 50(8):1139-1143, 1151(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/shjtdxxb201608001 [9] 王大勇, 王慧.基于变论域模糊控制的车辆半主动悬架控制方法[J].中国机械工程, 2017, 28(3):366-372 doi: 10.3969/j.issn.1004-132X.2017.03.019Wang D Y, Wang H. Control method of vehicle semi active suspensions based on variable universe fuzzy control[J]. China Mechanical Engineering, 2017, 28(3):366-372(in Chinese) doi: 10.3969/j.issn.1004-132X.2017.03.019 [10] 刘非, 李以农, 郑玲.装甲车辆磁流变半主动悬架变论域模糊控制[J].汽车工程, 2013, 35(8):735-739 doi: 10.3969/j.issn.1000-680X.2013.08.014Liu F, Li Y N, Zheng L. Variable universe fuzzy control for the magneto-rheological semi-active suspension in armored vehicles[J]. Automotive Engineering, 2013, 35(8):735-739(in Chinese) doi: 10.3969/j.issn.1000-680X.2013.08.014 [11] 殷珺, 陈辛波, 吴利鑫, 等.滤波白噪声路面时域模拟方法与悬架性能仿真[J].同济大学学报:自然科学版, 2017, 45(3):398-407 http://d.old.wanfangdata.com.cn/Periodical/tjdxxb201703014Yin J, Chen X B, Wu L X, et al. Simulation method of road excitation in time domain using filtered white noise and dynamic analysis of suspension[J]. Journal of Tongji University:Natural Science, 2017, 45(3):398-407(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/tjdxxb201703014 [12] 马海峰, 丁国富, 黄文培, 等.起重机定位和防摆的变论域模糊控制[J].系统仿真学报, 2014, 26(2):425-429, 474 http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201402032Ma H F, Ding G F, Huang W P, et al. Variable universe fuzzy control of anti-swing and position control for cranes[J]. Journal of System Simulation, 2014, 26(2):425-429, 474(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201402032 [13] Guo H G, Li H X. Robust variable universe adaptive fuzzy control[J]. Journal of Convergence Information Technology, 2013, 8(6):1140 doi: 10.4156/jcit [14] 樊立萍, 王会龙, 李崇.微生物燃料电池的变论域自适应模糊控制研究[J].电源技术, 2016, 40(2):313-315 doi: 10.3969/j.issn.1002-087X.2016.02.023Fan L P, Wang H L, Li C. Adaptive fuzzy control based on variable universe for microbial fuel cell[J]. Chinese Journal of Power Sources, 2016, 40(2):313-315(in Chinese) doi: 10.3969/j.issn.1002-087X.2016.02.023 [15] 蔡凌, 翟助群, 张缨, 等.基于模糊调整的变结构自适应PID控制器[J].兵工学报, 2015, (S2):280-284 http://www.cnki.com.cn/Article/CJFDTOTAL-BIGO2015S2050.htmCai L, Zhai Z Q, Zhang Y, et al. A position controller with variable structure adaptive PID based on fuzzy compensator[J]. Acta Armamentarii, 2015, (S2):280-284(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-BIGO2015S2050.htm [16] Ye H T, Li Z Q, Luo W G. Dissolved oxygen control of the activated sludge wastewater treatment process using adaptive fuzzy PID control[C]//Proceedings of the 32nd Chinese Control Conference. Xi'an: IEEE, 2013: 7510-7513 [17] Savran A. A multivariable predictive fuzzy PID control system[J]. Applied Soft Computing, 2013, 13(5):2658-2667 doi: 10.1016/j.asoc.2012.11.021 -