Study on Strength of Composite Lap Structures under Thermal Mechanical Coupling
-
摘要: 复合材料铆钉搭接结构在温度变化情况下强度的研究对复合材料在航空领域上的应用具有重要的意义。为研究温度的变化对复合材料铆钉搭接结构强度的影响,考虑到模型具有高度的非线性问题,因此选用ABAQUS/Explicit求解器进行热力耦合过程的准静态模拟。通过编写VUMAT子程序,修改了材料的本构模型,考虑了温度对复合材料基本属性的影响,添加了混合失效准则以及材料失效后的参数退化方式。在25℃和105℃条件下分别对有开孔的复合材料板进行了压缩的模拟和复合材料铆钉搭接结构进行了拉伸的模拟。研究结果表明,温度的升高会降低压缩载荷作用下复合材料板和拉伸载荷作用下复合材料铆钉搭接结构的刚度与强度。
-
关键词:
- 复合材料铆钉搭接结构 /
- 热力耦合 /
- VUMAT子程序 /
- 强度
Abstract: The research on the strength of composite rivet lap structure under the temperature change is of great significance to the application of composite materials in aviation industry. In order to study the influence of the temperature change on the strength of the rivet overlapping structure, the ABAQUS/Explicit solver is selected to simulate the thermal mechanical coupling process. By writing the VUMAT subprogram, the constitutive model is modified. The effect of the temperature on the basic properties of the composite is taken into account, and the mixed failure criterion and the method of parameter degradation after the failure of the material are added. Under the temperatures of 25℃ and 105℃, the compression simulation of the composite plate with open holes and the tensile simulation of the composite lap structures are carried out. The results show that the increase in temperature will reduce the stiffness and strength of composite plate under the compression load and the stiffness and strength of composite lap structures under the tensile load. -
表 1 刚度退化模式
损伤类型 材料参数退化方式 基体拉伸 E22=0.2E22, G12=0.2G12, G23=0.2G23 基体压缩 E22=0.4E22, G12=0.4G12, G23=0.4G23 纤维拉伸 Eii=0.07Eii, Gij=0.07Gij, υij=0.07υij(i, j=1, 2, 3, i≠j) 纤维压缩 Eii=0.14Eii, Gij=0.14Gij, υij=0.14υij(i, j=1, 2, 3, i≠j) 纤维基体剪切 G12=0.1G12, υ12=0.1υ12 分层 E33=0.1E33, G23=0.1G23, G13=0.1G13, υ23=0.1υ23, υ13=0.1υ13 表 2 复合材料基本属性及性能指标(υ为无量纲值)
基本属性 数值/MPa 性能指标 数值/MPa E1 115 142 Xt 1 447 E2 6 894 Xc 1 172 G12 12 410 Yt 68.9 υ 0.332 Yc 262 S 279 -
[1] 朱宝鎏, 朱荣昌, 熊笑非.作战飞机效能评估[M]. 2版.北京:航空工业出版社, 2006Zhu B L, Zhu R C, Xiong X F. Combat aircraft effectiveness evaluation[M]. 2nd ed. Beijing: Aviation Industry Press, 2006 (in Chinese) [2] Fang G D, Lian J, Wang B L. Progressive damage and nonlinear analysis of 3D four-directional braided composites under unidirectional tension[J]. Composite Structures, 2009, 89(1):126-133 doi: 10.1016/j.compstruct.2008.07.016 [3] Zhou S, Wang Z Q, Zhang J F, et al. Influence of ply angle on failure response of bolted composite joint[J]. Advanced Materials Research, 2012, 383-390:7128-7132 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/AMR.383-390.7128 [4] McCarthy M A, McCarthy C T, Padhi G S. A simple method for determining the effects of bolt-hole clearance on load distribution in single-column multi-bolt composite joints[J]. Composite Structures, 2006, 73(1):78-87 doi: 10.1016/j.compstruct.2005.01.028 [5] McCarthy C T, McCarthy M A. Three-dimensional finite element analysis of single-bolt, single-lap composite bolted joints: Part Ⅱ-effects of bolt-hole clearance[J]. Composite Structures, 2005, 71(2):159-175 doi: 10.1016/j.compstruct.2004.09.023 [6] McCarthy M A, Lawlor V P, Stanley W F. An experimental study of bolt-hole clearance effects in single-lap, multibolt composite Joints[J]. Composite Materials, 2005, 39(6):799-825 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1e7b750929c29bbc17a106baba1586cc [7] 王丹勇, 温卫东, 崔海涛.复合材料单钉接头三维逐渐损伤破坏分析[J].复合材料学报, 2005, 22(3):168-174 doi: 10.3321/j.issn:1000-3851.2005.03.032Wang D Y, Wen W D, Cui H T. Three-dimensional progressive damage analysis of single fastener joints in composite laminates[J]. Acta Materiae Compositae Sinica, 2005, 22(3):168-174 (in Chinese) doi: 10.3321/j.issn:1000-3851.2005.03.032 [8] 张岐良, 曹增强.复合材料螺接性能的影响因素研究[J].航空学报, 2012, 33(4):755-762 http://d.old.wanfangdata.com.cn/Periodical/hkxb201204021Zhang Q L, Cao Z Q. Study on factors influencing the performance of composite bolted connections[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4):755-762 (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkxb201204021 [9] Zhang J Y, Qi D X, Zhou L W, et al. A progressive failure analysis model for composite structures in hygrothermal environments[J]. Composite Structures, 2015, 133:331-342 doi: 10.1016/j.compstruct.2015.07.063 [10] Benkhedda A, Tounsi A, Adda bedia E A. Effect of temperature and humidity on transient hygrothermal stresses during moisture desorption in laminated composite plates[J]. Composite Structures, 2008, 82(4):629-635 doi: 10.1016/j.compstruct.2007.04.013 [11] 王娟, 施建伟, 张书亭, 等.复合材料螺栓连接接头渐进损伤分析研究进展[J].航空制造技术, 2016, (3):85-89, 96 http://d.old.wanfangdata.com.cn/Periodical/hkgyjs201603014Wang J, Shi J W, Zhang S T, et al. Research progress of progressive damage analysis of composite bolted joint[J]. Aeronautical Manufacturing Technology, 2016, (3):85-89, 96 (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkgyjs201603014 [12] Tserpes K I, Labeas G, Papanikos P, et al. Strength prediction of bolted joints in graphite/epoxy composite laminates[J]. Composites Part B: Engineering, 2002, 33(7):521-529 doi: 10.1016/S1359-8368(02)00033-1 [13] Tserpes K I, Papanikos P, Labeas G, et al. Fatigue damage accumulation and residual strength assessment of CFRP laminates[J]. Composite Structures, 2004, 63(2):219-230 doi: 10.1016/S0263-8223(03)00169-7 [14] 庄茁, 由小川, 廖剑晖, 等.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社, 2009Zhuang Z, You X C, Liao J H, et al. Finite element analysis and application based on ABAQUS[M]. Beijing: Tsinghua University Press, 2009 (in Chinese) [15] 张志宏, 张博平, 杨杰.复合材料层合板单搭接机械连接横向力研究[J].航空工程进展, 2018, 9(1):84-90 http://d.old.wanfangdata.com.cn/Periodical/hkgcjz201801011Zhang Z H, Zhang B P, Yang J. Study on the lateral force of the single lap joint of composite laminates[J]. Advances in Aeronautical Science and Engineering, 2018, 9(1):84-90 (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkgcjz201801011 [16] Liu F R, Lu X H, Zhao L B, et al. An interpretation of the load distributions in highly torqued single-lap composite bolted joints with bolt-hole clearances[J]. Composites Part B: Engineering, 2018, 138:194-205 doi: 10.1016/j.compositesb.2017.11.027 [17] Lawlor V P, McCarthy M A, Stanley W F. An experimental study of bolt-hole clearance effects in double-lap, multi-bolt composite joints[J]. Composite Structures, 2005, 71(2):176-190 doi: 10.1016/j.compstruct.2004.09.025 [18] Gray P J, McCarthy C T. A global bolted joint model for finite element analysis of load distributions in multi-bolt composite joints[J]. Composites Part B: Engineering, 2010, 41(4):317-325 doi: 10.1016/j.compositesb.2010.03.001 [19] 朱建辉, 曾建江, 陈滨琦, 等.复合材料层合板压缩载荷下渐进损伤分析与试验验证[J].机械科学与技术, 2015, 34(5):785-789 http://journals.nwpu.edu.cn/jxkxyjs/CN/abstract/abstract6058.shtmlZhu J H, Zeng J J, Chen B Q, et al. Analysis and experimental validation of the progressive damage for laminate composite under compression[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(5):785-789 (in Chinese) http://journals.nwpu.edu.cn/jxkxyjs/CN/abstract/abstract6058.shtml -