Research on Preview Algorithm for Stiffness Adjustment of Electronically Controlled Air Suspension System
-
摘要: 架变刚度控制可以很大程度改善客车乘坐舒适性。本文以电控空气悬架系统(ECAS)为基础,前悬架采用反馈控制方法,后悬架采用预瞄前馈与反馈相结合的控制方法,通过对空气弹簧充放气从而实现悬架刚度调节。在AMESim和Simulink中分别搭建ECAS模型和控制算法,在TruckSim中搭建整车模型,利用三者联合仿真对控制算法进行验证。为了提升高度跟踪精度,采用柔性PID取代传统PID控制策略,结果显示:该控制方法能够准确跟踪目标高度值,并且很好地抑制了"过冲"与"过放"问题。通过对平顺性指标进行测量发现,与无控制车辆相比,车身垂向加速度减小约60%,表明舒适性得到很大改善。Abstract: The ride comfort can be greatly improved thought the control of suspension variable stiffness. Based on the electronically controlled air suspension system (ECAS), the front suspension adopts the feedback control method, and the rear suspension adopts the control method combined with pre-aim feedforward and feedback. The suspension stiffness can be adjusted by filling air spring. The ECAS model and control algorithm are built respectively in AMESim and Simulink, and the vehicle model is built in TruckSim. In order to improve the tracking accuracy, the flexible PID control strategy is adopted. The experimental results demonstrate that the proposed control algorithm in this paper is suit to solve the problem of the over charging and over discharging when the height control is realized. The control algorithm is verified by the combined simulation. By measuring the smoothness index, the acceleration of the body was reduced by 60% compared with the non-control vehicle, indicating that the comfort was greatly improved.
-
表 1 柔性PID参数变化规则
调整值|e| Kp Ki Kd |e| > 2A Kpo=Kp1/a 0 Kdo=Kd1/c A < |e| < 2A Kp1 Ki1 Kd1 0.5A < |e| < A Kp2=Kp1/a Ki2=Ki1/b Kd2=c Kd1 |e| < 0.5A Kp3=Kp1/a2 Ki3=mKi1/b2 Kd3=c2Kd1 表 2 空气弹簧基本性能参数
囊内气压/MPa 承载能力/kN 弹簧刚度/(kN·m-1) 固有频率/Hz 3 13.10 72 1.18 5 22.25 111 1.11 7 33.66 147 1.07 表 3 整车基本参数
参数 数值 整备质量 13 000 kg 总质量 18 000 kg 高度 3 790 mm 前轴载荷 70 000 N 长度 12 000 mm 宽度 2 550 mm -
[1] Bao W N, Chen L P, Zhang Y Q, et al. Fuzzy adaptive sliding mode controller for an air spring active suspension[J]. International Journal of Automotive Technology, 2012, 13(7):1057-1065 doi: 10.1007/s12239-012-0108-2 [2] 孙晓强, 陈龙, 汪少华, 等.半主动空气悬架阻尼多模型自适应控制研究[J].农业机械学报, 2015, 46(3):351-357 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201503051Sun X Q, Chen L, Wang S H, et al. Research on damping multi-model adaptive control of semi-active air suspension[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3):351-357(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201503051 [3] Kim H, Lee H. Fault-tolerant control algorithm for a four-corner closed-loop air suspension system[J]. IEEE Transactions on Industrial Electronics, 2011, 58(10):4866-4879 doi: 10.1109/TIE.2011.2123852 [4] 陈月霞, 陈龙, 黄晨, 等.ECAS车辆车身高度调节系统与整车性能匹配研究[J].振动、测试与诊断, 2013, 33(S1):73-76 http://d.old.wanfangdata.com.cn/Periodical/zdcsyzd2013z1018Chen Y X, Chen L, Huang C, et al. Research on body height adjustment system for vehicles with electrically controlled air suspension and performance compromise[J]. Journal of Vibration, Measurement & Diagnosis, 2013, 33(S1):73-76(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zdcsyzd2013z1018 [5] 汪少华, 窦辉, 孙晓强, 等.电控空气悬架车高调节与整车姿态控制研究[J].农业机械学报, 2015, 46(10):335-342, 356 doi: 10.6041/j.issn.1000-1298.2015.10.045Wang S H, Dou H, Sun X Q, et al. Vehicle height adjustment and attitude control of electronically controlled air suspension[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(10):335-342, 356(in Chinese) doi: 10.6041/j.issn.1000-1298.2015.10.045 [6] 陈长征, 王刚, 于慎波.考虑时变输入时滞及频段约束的车辆主动悬架预瞄控制[J].机械工程学报, 2016, 52(16):124-131 http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201616017Chen C Z, Wang G, Yu S B. Preview control of vehicle active suspensions with time-varying input delay and frequency band constraints[J]. Journal of Mechanical Engineering, 2016, 52(16):124-131(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201616017 [7] 洪兢, 李礼夫.基于LabVIEW的磁流变半主动悬架预瞄控制的研究[J].控制工程, 2010, 17(S2):187-190 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201003398060Hong J, Li L F. Research on preview control of MRF semi-active suspension based on LabVIEW[J]. Control Engineering of China, 2010, 17(S2):187-190(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201003398060 [8] 贝绍轶, 袁传义, 陈龙, 等.基于轴距预瞄的半主动悬架模糊神经网络控制[J].汽车工程, 2010, 32(12):1067-1070, 1082 http://d.old.wanfangdata.com.cn/Periodical/qcgc201012012Bei S Y, Yuan C Y, Chen L, et al. Fuzzy neural network control of semi-active suspension based on wheelbase preview[J]. Automotive Engineering, 2010, 32(12):1067-1070, 1082(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/qcgc201012012 [9] 李金辉, 何杰, 李旭宏.基于轴距预瞄的重型汽车主动悬架道路友好性研究[J].公路交通科技, 2013, 30(11):152-158 doi: 10.3969/j.issn.1002-0268.2013.11.024Li J H, He J, Li X H. Road-friendliness analysis of heavy-duty vehicle active suspension based on wheelbase preview control[J]. Journal of Highway and Transportation Research and Development, 2013, 30(11):152-158(in Chinese) doi: 10.3969/j.issn.1002-0268.2013.11.024 [10] 宋刚, 许长城.考虑控制时滞的车辆主动悬架随机预瞄控制[J].农业机械学报, 2013, 44(6):1-7 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201306001Song G, Xu C C. Stochastic optimal preview control of active vehicle suspension with time-delay consideration[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(6):1-7(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201306001 [11] 冯元元, 杜群贵.半挂车电控空气悬架车高调节模糊与PWM控制研究[J].科学技术与工程, 2010, 10(32):7974-7979, 7992 doi: 10.3969/j.issn.1671-1815.2010.32.024Feng Y Y, Du Q G. Investigation on body height adjustment for semi-trailer with electrically controlled air suspension and design of fuzzy/PWM controller[J]. Science Technology and Engineering, 2010, 10(32):7974-7979, 7992(in Chinese) doi: 10.3969/j.issn.1671-1815.2010.32.024 [12] 周彤.客车电控空气悬架系统参数匹配与控制方法研究[D].长春: 吉林大学, 2015 http://cdmd.cnki.com.cn/Article/CDMD-10183-1015588107.htmZhou T. Research on electronically controlled air suspension matching and control strategy for bus[D]. Changchun: Jilin University, 2015(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10183-1015588107.htm [13] 张学臣, 陈国迎, 宗长富.客车电控空气悬架电子控制器试验台架[J].科学技术与工程, 2016, 16(23):280-284 doi: 10.3969/j.issn.1671-1815.2016.23.054Zhang X C, Chen G Y, Zong C F. Electronic controlled air suspension ECU Test bench for bus[J]. Science Technology and Engineering, 2016, 16(23):280-284(in Chinese) doi: 10.3969/j.issn.1671-1815.2016.23.054 [14] 黄潭.客车电控空气悬架系统控制策略研究[D].长春: 吉林大学, 2016 http://cdmd.cnki.com.cn/Article/CDMD-10183-1016079482.htmHuang T. Research on control strategy of electronically controlled air suspension system for bus[D]. Changchun: Jilin University, 2016(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10183-1016079482.htm [15] 赵伟强, 高恪, 王文彬.基于电液耦合转向系统的商用车防失稳控制[J].吉林大学学报:工学版, 2018, 48(5):1305-1312 http://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201805001.htmZhao W Q, Gao K, Wang W B. Prevention of instability control of commercial vehicle based on electric-hydraulic coupling steering system[J]. Journal of Jilin University:Engineering and Technology Edition, 2018, 48(5):1305-1312(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201805001.htm -