留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不确定非线性机械系统的自适应分解模糊控制

万敏 宋伟鹏 李建国

万敏, 宋伟鹏, 李建国. 不确定非线性机械系统的自适应分解模糊控制[J]. 机械科学与技术, 2019, 38(3): 440-444. doi: 10.13433/j.cnki.1003-8728.20180170
引用本文: 万敏, 宋伟鹏, 李建国. 不确定非线性机械系统的自适应分解模糊控制[J]. 机械科学与技术, 2019, 38(3): 440-444. doi: 10.13433/j.cnki.1003-8728.20180170
Wan Min, Song Weipeng, Li Jianguo. Adaptive Decomposition Fuzzy Control for Uncertain Mechanical Systems[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(3): 440-444. doi: 10.13433/j.cnki.1003-8728.20180170
Citation: Wan Min, Song Weipeng, Li Jianguo. Adaptive Decomposition Fuzzy Control for Uncertain Mechanical Systems[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(3): 440-444. doi: 10.13433/j.cnki.1003-8728.20180170

不确定非线性机械系统的自适应分解模糊控制

doi: 10.13433/j.cnki.1003-8728.20180170
基金项目: 

国家自然科学基金项目 51775463

宝石机械成都装备制造分公司技术合作项目 2018-QT-002

详细信息
    作者简介:

    万敏(1977-), 副教授, 博士研究生, 研究方向为智能控制技术和自动化装置, 18940103@qq.com

  • 中图分类号: TP273

Adaptive Decomposition Fuzzy Control for Uncertain Mechanical Systems

  • 摘要: 为了保证系统较高的控制精度,就必须提高模糊系统的逼近精度,但其所需的大量的模糊规则会造成控制系统计算负担过重,不能满足实时性要求。为此,本文针对不确定机械系统的控制问题,设计了一种分解模糊系统用于系统中不确定函数的逼近和补偿,在此基础上针对不确定系统设计了鲁棒自适应控制律对非线性系统进行轨迹跟踪控制。仿真实验证明,本文设计的自适应分解模糊控制不但能对机械系统的未知部分进行实时补偿,并且比传统自适应模糊控制的控制精度更高,误差收敛更快,更有利于实时控制。
  • 图  1  模糊系统的输入变量隶属函数

    图  2  3个分解模糊子系统的输入隶属函数

    图  3  位置跟踪效果对比

    图  4  速度跟踪效果对比

    图  5  位置跟踪误差对比

    图  6  速度跟踪误差对比

  • [1] Slotine J J E. Applied nonlinear control[M]. Li W P, trans. Beijing: China Machine Press, 2004
    [2] Hu Q L, Ma G F, Xie L H. Robust and adaptive variable structure output feedback control of uncertain systems with input nonlinearity[J]. Automatica, 2008, 44(2):552-559 doi: 10.1016/j.automatica.2007.06.024
    [3] Xiao B, Yin S, Kaynak O. Tracking control of robotic manipulators with uncertain kinematics and dynamics[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10):6439-6449 doi: 10.1109/TIE.2016.2569068
    [4] Jumarie G. Tracking control of mechanical systems via sliding Lagrangian[J]. Journal of Intelligent and Robotic Systems, 1995, 13(2):181-199 doi: 10.1007/BF01254851
    [5] Xu R, Öner Ü. Sliding mode control of a class of underactuated systems[J]. Automatica, 2008, 44(1):233-241 doi: 10.1016/j.automatica.2007.05.014
    [6] Pisano A, Usai E. Sliding mode control:a survey with applications in math[J]. Mathematics and Computers in Simulation, 2011, 81(5):954-979 doi: 10.1016/j.matcom.2010.10.003
    [7] Swaroop D, Hedrick J K, Yip P P, et al. Dynamic surface control for a class of nonlinear systems[J]. IEEE Transactions on Automatic Control, 2000, 45(10):1893-1899 doi: 10.1109/TAC.2000.880994
    [8] Riachy S, Orlov Y, Floquet T, et al. Second-order sliding mode control of underactuated mechanical systems Ⅰ:local stabilization with application to an inverted pendulum[J]. International Journal of Robust and Nonlinear Control, 2008, 18(4-5):529-543 doi: 10.1002/(ISSN)1099-1239
    [9] Sun L, Zheng Z W. Finite-time sliding mode trajectory tracking control of uncertain mechanical systems[J]. Asian Journal of Control, 2017, 19(1):399-404 doi: 10.1002/asjc.v19.1
    [10] Kovaleva A, Akulenko L. Approximation of escape time for Lagrangian systems with fast noise[J]. IEEE Transactions on Automatic Control, 2007, 52(12):2338-2341 doi: 10.1109/TAC.2007.910696
    [11] Lightbody G, Irwin G W. Direct neural model reference adaptive control[J]. IEE Proceedings-Control Theory and Applications, 1995, 142(1):31-43 doi: 10.1049/ip-cta:19951613
    [12] Wang F Y, Kim H M. Implementing adaptive fuzzy logic controllers with neural networks:a design paradigm[J]. Journal of Intelligent and Fuzzy Systems, 1995, 3(2):165-180
    [13] 吴玉香, 王聪.基于确定学习的机器人任务空间自适应神经网络控制[J].自动化学报, 2013, 39(6):806-815 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20132013071700062667

    Wu Y X, Wang C. Deterministic learning based adaptive network control of robot in task space[J]. Acta Automatica Sinica, 2013, 39(6):806-815(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20132013071700062667
    [14] 吴玉香, 王聪.不确定机器人的自适应神经网络控制与学习[J].控制理论与应用, 2013, 30(8):990-997 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201308007

    Wu Y X, Wang C. Adaptive neural network control and learning for uncertain robot[J]. Control Theory & Applications, 2013, 30(8):990-997(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201308007
    [15] Liu Y J, Tong S C. Adaptive fuzzy control for a class of unknown nonlinear dynamical systems[J]. Fuzzy Sets and Systems, 2015, 263:49-70 doi: 10.1016/j.fss.2014.08.008
    [16] Wang H O, Tanaka K, Griffin M F. An approach to fuzzy control of nonlinear systems:stability and design issues[J]. IEEE Transactions on Fuzzy Systems, 1996, 4(1):14-23 doi: 10.1109/91.481841
    [17] Hwang C L, Chiang C C, Yeh Y W. Adaptive fuzzy hierarchical sliding-mode control for the trajectory tracking of uncertain underactuated nonlinear dynamic systems[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(2):286-299 doi: 10.1109/TFUZZ.2013.2253106
    [18] 吴东苏, 顾宏斌.基于模糊干扰观测器的电动Stewart平台自适应模糊控制[J].机械科学与技术, 2008, 27(6):757-763 doi: 10.3321/j.issn:1003-8728.2008.06.013

    Wu D S, Gu H B. Adaptive fuzzy control for an electrical driven stewart platform based on fuzzy disturbance observer[J]. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(6):757-763(in Chinese) doi: 10.3321/j.issn:1003-8728.2008.06.013
    [19] Wang L X, Mendel J M. Fuzzy basis functions, universal approximation, and orthogonal least-squares learning[J]. IEEE Transactions on Neural Networks, 1992, 3(5):807-814 doi: 10.1109/72.159070
    [20] 刘金琨.机器人控制系统的设计与MATLAB仿真[M].北京:清华大学出版社, 2008

    Liu J K. Robot control system design and MATLAB simulation[M]. Beijing:Tsinghua University Press, 2008(in Chinese)
    [21] Yoo B K, Ham W C. Adaptive control of robot manipulator using fuzzy compensator[J]. IEEE Transactions on Fuzzy Systems, 2000, 8(2):186-199 doi: 10.1109/91.842152
    [22] Hsueh Y C, Su S F, Chen M C. Decomposed fuzzy systems and their application in direct adaptive fuzzy control[J]. IEEE Transactions on Cybernetics, 2014, 44(10):1772-1783 doi: 10.1109/TCYB.2013.2295114
    [23] 刘金琨.智能控制[M].北京:电子工业出版社出, 2014

    Liu J K. Intelligent control[M]. Beijing:Publishing House of Electronics Industry, 2014(in Chinese)
  • 加载中
图(6)
计量
  • 文章访问数:  246
  • HTML全文浏览量:  49
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-20
  • 刊出日期:  2019-03-05

目录

    /

    返回文章
    返回