留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同加载条件下柱面/平面微动磨损有限元分析

李玲 康乐 阮晓光 蔡安江

李玲, 康乐, 阮晓光, 蔡安江. 不同加载条件下柱面/平面微动磨损有限元分析[J]. 机械科学与技术, 2018, 37(12): 1854-1861. doi: 10.13433/j.cnki.1003-8728.20180132
引用本文: 李玲, 康乐, 阮晓光, 蔡安江. 不同加载条件下柱面/平面微动磨损有限元分析[J]. 机械科学与技术, 2018, 37(12): 1854-1861. doi: 10.13433/j.cnki.1003-8728.20180132
Li Ling, Kang Le, Ruan Xiaoguang, Cai Anjiang. Finite Element Analysis of Cylinder-flat Fretting Wear under Different Loading Conditions[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(12): 1854-1861. doi: 10.13433/j.cnki.1003-8728.20180132
Citation: Li Ling, Kang Le, Ruan Xiaoguang, Cai Anjiang. Finite Element Analysis of Cylinder-flat Fretting Wear under Different Loading Conditions[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(12): 1854-1861. doi: 10.13433/j.cnki.1003-8728.20180132

不同加载条件下柱面/平面微动磨损有限元分析

doi: 10.13433/j.cnki.1003-8728.20180132
基金项目: 

国家自然科学基金项目 51305327

陕西省自然科学基金项目 2014JQ7270

国家自然科学基金项目 51475352

详细信息
    作者简介:

    李玲(1981-), 副教授, 博士, 研究方向为机械动力学和接触力学方面研究, lee_liling@163.com

    通讯作者:

    阮晓光, 副教授, 博士, rxgly@126.com

  • 中图分类号: TH113;TB123

Finite Element Analysis of Cylinder-flat Fretting Wear under Different Loading Conditions

  • 摘要: 在ABAQUS中建立柱面/平面微动磨损模型,设置不同的加载条件,分析接触区域的接触应力和相对滑移距离,获得了区分两种滑移状态的临界函数。结合能量模型和FORTRAN语言编写适用于本模型的UMESHMOTION子程序,实现了磨损表面节点的动态更新,建立了动态磨损模型。通过对不同情况下磨损深度和磨损体积的仿真分析,获得结论:随循环次数的增加,磨损深度、磨损宽度和磨损体积都随着增大,部分滑移状态的磨损体积远小于完全滑移状态的磨损体积;循环次数和法向载荷为定值时,随位移幅值的增加,磨损宽度、磨损深度和磨损体积都随着增大,部分滑移状态的磨损体积很小且增长缓慢,完全滑移状态的磨损体积增长迅速;循环次数和位移幅值为定值时,在完全滑移状态,随法向载荷的增加,磨损深度和磨损体积先增大再减小;在磨损体积先增大再减小的过程中,存在一个最大值,对应的法向载荷和位移幅值称为危险加载条件,通过揭示不同位移幅值时危险加载条件的变化规律,为避免该条件的出现提供了理论依据。
  • 图  1  有限元模型

    图  2  加载过程

    图  3  接触压力的有限元解与Hertz解比较

    图  4  不同位移幅值下相关接触量的分布

    图  5  剪切摩擦力与接触压力的比值

    图  6  不同法向载荷下相关接触量的分布

    图  7  不同位移幅值时接触中心相对滑移距离分布

    图  8  两种滑移状态的分界线

    图  9  微动磨损数值仿真流程图

    图  10  不同循环次数的磨损形貌

    图  11  不同位移幅值的磨损形貌

    图  12  不同位移幅值的磨损体积

    图  13  不同法向载荷的磨损形貌

    图  14  不同法向载荷的磨损体积

    图  15  不同加载条件时的磨损体积

    表  1  接触条件设置

    类型 加载时间步 法向载荷/MPa 位移幅值/μm
    1 2 20 1-7
    2 2 20~25 5
    下载: 导出CSV

    表  2  两种滑移状态的加载条件

    滑移状态 法向载荷 位移幅值 加速次数 磨损系数
    部分滑移 20 MPa 4 μm 1 000 3.33×10-8 MPa-1
    完全滑移 20 MPa 7 μm 1 000 3.33×10-8 MPa-1
    下载: 导出CSV
  • [1] 周仲荣, Vincent L.微动磨损[M].北京:科学出版社, 2002

    Zhou Z R, Vincent L. Fretting wear[M]. Beijing:Science Press, 2002(in Chinese)
    [2] Yue T Y, Wahab M A. Finite element analysis of fretting wear under variable coefficient of friction and different contact regimes[J]. Tribology International, 2017, 107:274-282 doi: 10.1016/j.triboint.2016.11.044
    [3] Zhang X, Shen H M, Liu J, et al. An efficient numerical model for predicting the torsional fretting wear considering real rough surface[J]. Wear, 2015, 344-345:32-45 doi: 10.1016/j.wear.2015.10.019
    [4] 范娜, 王云霞, 王秋凤, 等.载荷对304不锈钢微动磨损性能的影响[J].摩擦学学报, 2016, 36(5):555-561 http://d.old.wanfangdata.com.cn/Periodical/mcxxb201605004

    Fan N, Wang Y X, Wang Q F, et al. Effects of load on fretting wear behaviors of 304 stainless steels[J]. Tribology, 2016, 36(5):555-561(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/mcxxb201605004
    [5] 李文丽, 原大宁, 刘宏昭, 等.小子样下机构系统磨损仿真可靠性研究[J].机械工程学报, 2015, 51(13):235-244 http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201513028

    Li W L, Yuan D N, Liu H Z, et al. Reliability research on the mechanism system wear simulation under the case of the small-scale sample[J]. Journal of Mechanical Engineering, 2015, 51(13):235-244(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201513028
    [6] Warmuth A R, Pearson S R, Shipway P H, et al. The effect of contact geometry on fretting wear rates and mechanisms for a high strengthsteel[J]. Wear, 2013, 301(1-2):491-500 doi: 10.1016/j.wear.2013.01.018
    [7] Li J, Ma M, Lu Y H, et al. Evolution of wear damage in Inconel 600 alloy due to fretting against type 304 stainless steel[J]. Wear, 2016, 346-347:15-21 doi: 10.1016/j.wear.2015.10.011
    [8] Tang L C, Ding S R, Qian H, et al. Fretting fatigue tests and crack initiation analysis on zircaloy tube specimens[J]. International Journal of Fatigue, 2014, 63:154-161 doi: 10.1016/j.ijfatigue.2014.01.020
    [9] Wang Q F, Wang Y X, Wang H L, et al. Fretting wear behavior of UHMWPE-influence of load and stroke[J]. Tribology Transactions, 2017, 60(1):187-194 doi: 10.1080/10402004.2016.1155787
    [10] Cura F, Qureshi W, Mura A. A methodological approach for incremental fretting wear formulation[J]. Tribology Letters, 2016, 64(2):20 doi: 10.1007/s11249-016-0760-1
    [11] Xin L, Wang Z H, Li J, et al. Fretting wear behavior and mechanism of Inconel 690 alloy related to the displacement amplitude[J]. Tribology Transactions, 2017, 60(5):913-922 doi: 10.1080/10402004.2016.1230686
    [12] Ghosh A, Leonard B, Sadeghi F. A stress based damage mechanics model to simulate fretting wear of Hertzian line contact in partial slip[J]. Wear, 2013, 307(1-2):87-99 doi: 10.1016/j.wear.2013.08.008
    [13] Fouvry S, Kapsa P, Vincent L. Quantification of fretting damage[J]. Wear, 1996, 200(1-2):186-205 doi: 10.1016/S0043-1648(96)07306-1
    [14] Yue T Y, Wahab M A. Finite element analysis of stress singularity in partial slip and gross sliding regimes in fretting wear[J]. Wear, 2014, 321:53-63 doi: 10.1016/j.wear.2014.09.008
    [15] Tobi A L M, Ding J, Bandak G, et al. A study on the interaction between fretting wear and cyclic plasticity for Ti-6Al-4V[J]. Wear, 2009, 267(1-4):270-282 doi: 10.1016/j.wear.2008.12.039
    [16] Zeise B, Liebich R, Prölß M. Simulation of fretting wear evolution for fatigue endurance limit estimation of assemblies[J]. Wear, 2014, 316(1-2):49-57 doi: 10.1016/j.wear.2014.04.013
    [17] Hojjati-Talemi R, Wahab M A, De Baets P. Finite element simulation of phase difference effects on fretting fatigue crack nucleation behaviour[J]. Journal of Engineering Tribology, 2014, 228(4):470-479 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=36cf456ea79f8ff7fdb7f4658aa6e073
    [18] Liu J, Shen H M, Yang Y R. Finite element implementation of a varied friction model applied to torsional fretting wear[J]. Wear, 2014, 314(1-2):220-227 doi: 10.1016/j.wear.2014.01.006
    [19] Done V, Kesavan D, Krishna R M, et al. Semi analytical fretting wear simulation including wear debris[J]. Tribology International, 2017, 109:1-9 doi: 10.1016/j.triboint.2016.12.012
    [20] Ferjaoui A, Yue T, Wahab M A, et al. Prediction of fretting fatigue crack initiation in double lap bolted joint using continuum damage mechanics[J]. International Journal of Fatigue, 2015, 73:66-76 doi: 10.1016/j.ijfatigue.2014.11.012
    [21] Kauzlarich J J, Williams J A. Archard wear and component geometry[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2001, 215(4):387-403 doi: 10.1243/1350650011543628
    [22] Sauger E, Fouvry S, Ponsonnet L, et al. Tribologically transformed structure in fretting[J]. Wear, 2000, 245(1-2):39-52 doi: 10.1016/S0043-1648(00)00464-6
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  813
  • HTML全文浏览量:  347
  • PDF下载量:  413
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-11
  • 刊出日期:  2018-12-05

目录

    /

    返回文章
    返回