留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

支持向量回归参数估计在风电机组故障模式分析中的应用

尹浩霖 王达梦 马志勇 曾星明 柳亦兵

尹浩霖, 王达梦, 马志勇, 曾星明, 柳亦兵. 支持向量回归参数估计在风电机组故障模式分析中的应用[J]. 机械科学与技术, 2018, 37(11): 1755-1761. doi: 10.13433/j.cnki.1003-8728.20180039
引用本文: 尹浩霖, 王达梦, 马志勇, 曾星明, 柳亦兵. 支持向量回归参数估计在风电机组故障模式分析中的应用[J]. 机械科学与技术, 2018, 37(11): 1755-1761. doi: 10.13433/j.cnki.1003-8728.20180039
Yin Haolin, Wang Dameng, Ma Zhiyong, Zeng Xingming, Liu Yibing. Application of Support Vector Regression Parameter Estimation to Fault Mode Analysis in Wind Turbines[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(11): 1755-1761. doi: 10.13433/j.cnki.1003-8728.20180039
Citation: Yin Haolin, Wang Dameng, Ma Zhiyong, Zeng Xingming, Liu Yibing. Application of Support Vector Regression Parameter Estimation to Fault Mode Analysis in Wind Turbines[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(11): 1755-1761. doi: 10.13433/j.cnki.1003-8728.20180039

支持向量回归参数估计在风电机组故障模式分析中的应用

doi: 10.13433/j.cnki.1003-8728.20180039
基金项目: 

国家自然科学基金项目(51775186)与河北省科技计划项目(15214307D)资助

详细信息
    作者简介:

    尹浩霖(1987-),工程师,博士研究生,研究方向为风电设备运行维护,545107211@qq.com

    通讯作者:

    柳亦兵,教授,博士生导师,博士,lyb@ncepu.edu.cn

Application of Support Vector Regression Parameter Estimation to Fault Mode Analysis in Wind Turbines

  • 摘要: 风轮系统的可靠与否直接影响着风电机组的安全运行,有必要对其建立合理的可靠性模型并准确估计模型参数,以反映其真实可靠性情况。威布尔分布模型被广泛应用于各领域的可靠性建模,支持向量回归机(SVR)保持了支持向量机适用于小样本的特性,可用于小样本数据可靠性模型的参数估计。以某个风电场投运以来的风轮系统故障数据为基础,建立其威布尔分布模型,采用SVR估计模型参数,并与传统的基于最小二乘法的参数估计结果对比,结果表明,采用SVR估计模型参数具有更高的准确性,更适合于小样本数据可靠性模型的参数估计。
  • [1] Elmahdy E E, Aboutahoun A W. A new approach for parameter estimation of finite Weibull mixture distributions for reliability modeling[J]. Applied Mathematical Modelling, 2013,37(4):1800-1810
    [2] 伍建军,吴小明,谢周伟,等.改进威布尔分布的矿冶零部件可靠性寿命预测研究[J].机械科学与技术,2017,36(3):436-441 Wu J J, Wu X M, Xie Z W, et al. Prediction of reliability life of mining and metallurgy parts via an improved Weibull distribution[J]. Mechanical Science and Technology for Aerospace Engineering, 2017,36(3):436-441(in Chinese)
    [3] 秦金磊,牛玉广,李整.电站设备可靠性问题的威布尔模型求解优化方法[J].中国电机工程学报,2012,(S1):35-40 Qin J L, Niu Y G, Li Z. Optimization approach of Weibull model solution for power station equipment reliability[J]. Proceedings of the CSEE, 2012,(S1):35-40(in Chinese)
    [4] 芮晓明,张穆勇,霍娟.试运行期间风电机组平均故障间隔时间的估计[J].中国电机工程学报,2014,34(21):3475-3480 Rui X M, Zhang M Y, Huo J. An estimation method of wind turbines' mean time between failures during the trial operation period[J]. Proceedings of the CSEE, 2014,34(21):3475-3480(in Chinese)
    [5] Diamantopoulou M J, O··zcelik R, Crecente-Campo F, et al. Estimation of Weibull function parameters for modelling tree diameter distribution using least squares and artificial neural networks methods[J]. Biosystems Engineering, 2015,133:33-45
    [6] Yang F, Yue Z F. Kernel density estimation of three-parameter Weibull distribution with neural network and genetic algorithm[J]. Applied Mathematics and Computation, 2014,247:803-814
    [7] Nagatsuka H, Kamakura T, Balakrishnan N. A consistent method of estimation for the three-parameter Weibull distribution[J]. Computational Statistics & Data Analysis, 2013,58:210-226
    [8] Usta I. An innovative estimation method regarding Weibull parameters for wind energy applications[J]. Energy, 2016,106:301-314
    [9] 郑锐.三参数威布尔分布参数估计及在可靠性分析中的应用[J].振动与冲击,2015,34(5):78-81 Zheng R. Parameter estimation of three-parameter Weibull distribution and its application in reliability analysis[J]. Journal of Vibration And Shock, 2015,34(5):78-81(in Chinese)
    [10] 南东雷,贾志新,李威.三参数威布尔分布的蒙特卡洛点估计方法[J].机械设计与制造,2017,(1):142-144,148 Nan D L, Jia Z X, Li W. Monte Carlo based parametric point estimation for three parameter Weibull distribution[J]. Machinery Design & Manufacture, 2017,(1):142-144,148(in Chinese)
    [11] 于晓红,张来斌,王朝晖,等.基于新的威布尔分布参数估计法的设备寿命可靠性分析[J].机械强度,2007,29(6):932-936 Yu X H, Zhang L B, Wang Z H, et al. Reliability life analysis of the equipment based on new weibull distribution parameter estimation method[J]. Journal of Mechanical Strength, 2007,29(6):932-936(in Chinese)
    [12] 范英,田志成.基于Bayes方法的小子样可靠性分析[J].机械强度,2012,34(2):274-277 Fan Y, Tian Z C. Reliability analysis on small sample based on Bayes[J]. Journal of Mechanical Strength, 2012,34(2):274-277(in Chinese)
    [13] 康守强,王玉静,杨广学,等.基于经验模态分解和超球多类支持向量机的滚动轴承故障诊断方法[J].中国电机工程学报,2011,31(14):96-102 Kang S Q, Wang Y J, Yang G X, et al. Rolling bearing fault diagnosis method using empirical mode decomposition and hypersphere multiclass support vector machine[J]. Proceedings of the CSEE, 2011,31(14):96-102(in Chinese)
    [14] 张冬生.支持向量机在分类问题中的应用研究[J].黑龙江科技信息,2010,(35):64,264 Zhang D S. The application research of support vector machine (SVM) in classification problems[J]. Heilongjiang Science and Technology Information, 2010,(35):64,264(in Chinese)
    [15] 张睿,马建文.支持向量机在遥感数据分类中的应用新进展[J].地球科学进展,2009,24(5):555-562 Zhang R, Ma J W. State of the art on remotely sensed data classification based on support vector machines[J]. Advances in Earth Science, 2009,24(5):555-562(in Chinese)
    [16] 刘斌.支持向量机及其在信号处理中的应用[D]. 黑龙江大庆:大庆石油学院,2006 Liu B. Support vector machine and its applications on signal processing[D]. Heilongjiang Daqing:Northeast Petroleum University, 2006(in Chinese)
    [17] 尉询楷,李应红,张朴,等.基于支持向量机的时间序列预测模型分析与应用[J].系统工程与电子技术,2005,27(3):529-532 Wei X K, Li Y H, Zhang P, et al. Analysis and applications of time series forecasting model via support vector machines[J]. Systems Engineering and Electronics, 2005,27(3):529-532(in Chinese)
    [18] 赖永标.支持向量机在地下工程中的应用研究[D].山东青岛:山东科技大学,2004 Lai Y B. Application and study of support vector machine in the underground engineering[D]. Shandong Qingdao:Shandong University of Science and Technology, 2004(in Chinese)
    [19] 张新锋,赵彦,王生昌,等.基于支持向量机的小样本威布尔可靠性分析[J].机械科学与技术,2012,31(8):1359-1362 Zhang X F, Zhao Y, Wang S C, et al. Weibull reliability analysis in small samples based on SVM[J]. Mechanical Science and Technology for Aerospace Engineering, 2012,31(8):1359-1362(in Chinese)
    [20] 张新锋,赵彦.发动机系统可靠性最小二乘支持向量机分析[J].机械设计与制造,2012,(9):219-221 Zhang X F, Zhao Y. Reliability analysis of engine systems with least square support vector machine[J]. Machinery Design & Manufacture, 2012,(9):219-221(in Chinese)
    [21] 吴鹏,吴军,邓超. 基于SVR的数控机床性能退化分析与可靠性评估[C]//Applied Computing,Computer Science, and Computer Engineering(ACC 2011 V2). Malaysia:Intelligent Information Technology Application Association,2011:586-591 Wu P, Wu J, Deng C. SVR-based degradation analysis and reliability assessment for CNC machine tools[C]//Applied Computing, Computer Science, and Computer Engineering (ACC 2011 V2). Malaysia:Intelligent Information Technology Application Association,2011:586-591(in Chinese)
    [22] Díaz S, Carta J A, Matías J M. Comparison of several measure-correlate-predict models using support vector regression techniques to estimate wind power densities. A case study[J]. Energy Conversion and Management, 2017,140:334-354
    [23] Che J X, Yang Y L, Li L, et al. A modified support vector regression:Integrated selection of training subset and model[J]. Applied Soft Computing, 2017,53:308-322
    [24] Rocco C M, Moreno J A. Fast Monte Carlo reliability evaluation using support vector machine[J]. Reliability Engineering & System Safety, 2002,76(3):237-243
    [25] 李海生.支持向量机回归算法与应用研究[D].广州:华南理工大学,2005 Li H S. Algorithm and application research of support vector machine regression[D]. Guangzhou:South China University of Technology, 2005(in Chinese)
    [26] 凌丹.威布尔分布模型及其在机械可靠性中的应用研究[D].成都:电子科技大学,2011 Ling D. Research on Weibull distribution and its applications in mechanical reliability engineering[D]. Chengdu:University of Electronic Science and Technology of China, 2011(in Chinese)
  • 加载中
计量
  • 文章访问数:  272
  • HTML全文浏览量:  49
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-12
  • 刊出日期:  2018-11-05

目录

    /

    返回文章
    返回