留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种多机器人的改进势场路径规划算法

胡小平 曹敬

胡小平, 曹敬. 一种多机器人的改进势场路径规划算法[J]. 机械科学与技术, 2018, 37(8): 1207-1216. doi: 10.13433/j.cnki.1003-8728.20180009
引用本文: 胡小平, 曹敬. 一种多机器人的改进势场路径规划算法[J]. 机械科学与技术, 2018, 37(8): 1207-1216. doi: 10.13433/j.cnki.1003-8728.20180009
Hu Xiaoping, Cao Jing. An Improved Potential Field Path Planning Algorithm for Multiple Robots[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(8): 1207-1216. doi: 10.13433/j.cnki.1003-8728.20180009
Citation: Hu Xiaoping, Cao Jing. An Improved Potential Field Path Planning Algorithm for Multiple Robots[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(8): 1207-1216. doi: 10.13433/j.cnki.1003-8728.20180009

一种多机器人的改进势场路径规划算法

doi: 10.13433/j.cnki.1003-8728.20180009
基金项目: 

国家自然科学基金项目(61572185)与湖南省科技计划项目(2014GK3160)资助

详细信息
    作者简介:

    胡小平(1962-),教授,博士,研究方向为测控技术、智能控制技术,hxp210@163.com

An Improved Potential Field Path Planning Algorithm for Multiple Robots

  • 摘要: 针对多机器人在实际作业中面临的全局拥堵问题和对人类避障问题提出了三种改进势场。为保证机器人之间的基础避碰,使用社群势场定义机器人之间的相互作用力。当人类与机器人在环境中共存时,使用行为势场,兼顾机器人移动效率和对人类避障,以寻求安全与效率之间的平衡。提出防堵势场以识别并避免全局拥堵。在仿真中,结合三种势场,对提出的规划方法的有效性进行了验证。通过投影的实验结果将改进前后的方法进行了对比,进一步说明了提出方法较传统方法效率更高。
  • [1] Kim D H, Shin S. New repulsive potential functions with angle distributions for local path planning[J]. Advanced Robotics, 2006,20(1):25-47
    [2] Ge S S, Cui Y J. Dynamic motion planning for mobile robots using potential field method[J]. Autonomous Robots, 2002,13(3):207-222
    [3] Huang L. Velocity planning for a mobile robot to track a moving target-a potential field approach[J]. Robotics and Autonomous Systems, 2009,57(1):55-63
    [4] Johansson A, Helbing D, Shukla P K. Specification of the social force pedestrian model by evolutionary adjustment to video tracking data[J]. Advances in Complex Systems, 2007,10(2):271-288
    [5] Helbing D, Johansson A. Pedestrian, crowd, and evacuation dynamics[M]//Meyers R A. Encyclopedia of Complexity and Systems Science. New York:Springer, 2012,16:697-716
    [6] Helbing D, Molnár P. Social force model for pedestrian dynamics[J]. Physical Review E, 1995,51(5):4282-4286
    [7] Morales Y, Satake S, Huq R, et al. How do people walk side-by-side?-using a computational model of human behavior for a social robot[C]//Proceedings of the 7th ACM/IEEE International Conference on Human-Robot Interaction. Boston, MA, USA:IEEE, 2012:301-308
    [8] Khandelwal P, Stone P. Multi-robot human guidance:human experiments and multiple concurrent requests[C]//Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems. S a~o Paulo, Brazil:ACM, 2017:1369-1377
    [9] Okada M, Motegi Y, Yamamoto K. Human swarm modeling in exhibition space and space design[C]//Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, CA, USA:IEEE, 2011:5021-5026
    [10] Shotton J, Fitzgibbon A, Cook M, et al. Real-time human pose recognition in parts from single depth images[M]//Cipolla R, Battiato S, Farinella G M. Machine Learning for Computer Vision. Berlin, Heidelberg:Springer, 2013:1297-1304
    [11] Pimenta L C A, Michael N, Mesquita R C, et al. Control of swarms based on Hydrodynamic models[C]//Proceedings of 2008 IEEE International Conference on Robotics and Automation. Pasadena, CA, USA:IEEE, 2008:1948-1953
    [12] Schwager M, Dames P, Rus D, et al. A Multi-robot control policy for information gathering in the presence of unknown hazards[M]//Christensen H I, Khatib O. Robotics Research. Cham:Springer, 2017
    [13] Das P K, Behera H S, Panigrahi B K. A hybridization of an improved particle swarm optimization and gravitational search algorithm for multi-robot path planning[J]. Swarm and Evolutionary Computation, 2016,28:14-28
    [14] Zhao R, Lee H K. Fuzzy-based path planning for multiple mobile robots in unknown dynamic environment[J]. Journal of Electrical Engineering and Technology, 2017,12(2):918-925
    [15] Burstedde C, Klauck K, Schadschneider A, et al. Simulation of pedestrian dynamics using a two-dimensional cellular automaton[J]. Physica A:Statistical Mechanics and Its Applications, 2001, 295(3-4):507-525
  • 加载中
计量
  • 文章访问数:  963
  • HTML全文浏览量:  39
  • PDF下载量:  727
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-07
  • 刊出日期:  2018-08-05

目录

    /

    返回文章
    返回