留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

工业机器人视觉图像的质量评价方法研究

王靖宇 王霰禹 张科 张彦华 王景鹏

王靖宇, 王霰禹, 张科, 张彦华, 王景鹏. 工业机器人视觉图像的质量评价方法研究[J]. 机械科学与技术, 2018, 37(4): 575-580. doi: 10.13433/j.cnki.1003-8728.2018.0413
引用本文: 王靖宇, 王霰禹, 张科, 张彦华, 王景鹏. 工业机器人视觉图像的质量评价方法研究[J]. 机械科学与技术, 2018, 37(4): 575-580. doi: 10.13433/j.cnki.1003-8728.2018.0413
Wang Jingyu, Wang Xianyu, Zhang Ke, Zhang Yanhua, Wang Jingpeng. Research on Image Quality Assessment for Industrial Robot Vision System[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(4): 575-580. doi: 10.13433/j.cnki.1003-8728.2018.0413
Citation: Wang Jingyu, Wang Xianyu, Zhang Ke, Zhang Yanhua, Wang Jingpeng. Research on Image Quality Assessment for Industrial Robot Vision System[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(4): 575-580. doi: 10.13433/j.cnki.1003-8728.2018.0413

工业机器人视觉图像的质量评价方法研究

doi: 10.13433/j.cnki.1003-8728.2018.0413
基金项目: 

国家自然科学基金项目(61174204、61502391)、航天支撑基金项目(N2015KC0121)及陕西省自然科学基础研究计划项目(2017JM6043)资助

详细信息
    作者简介:

    王靖宇(1985-),讲师,博士,研究方向为数字信号处理、数据挖掘与分析,jywang@nwpu.edu.cn

Research on Image Quality Assessment for Industrial Robot Vision System

  • 摘要: 工业机器人视觉系统在校准和标定过程中需要对成像质量进行客观评价,而在参考图像已知的情况下,现有图像质量评价方法无法有效表征图像局部结构差异,难以充分考虑像素级差异对局部结构的影响。针对上述问题,提出了一种基于视觉显著性的全参考图像质量评价方法。其中,设计了一种基于梯度图的差异度表征方法,利用相位一致性和梯度图来描述图像局部结构和像素级的差异,进而提出了基于视觉显著性的图像质量评价方法,通过利用像素级差异对图像局部结构进行权重赋值,从而提高算法对图像进行质量评价时的性能。实验结果表明,本文方法和其他四种典型图像质量评价算法相比,能够在三个标准图像数据库上取得更高的质量评价分数。
  • [1] Huang S, Bergström N, Yamakawa Y, et al. Applying high-speed vision sensing to an industrial robot for high-performance position regulation under uncertainties[J]. Sensors, 2016,16(8):1195
    [2] Wang J, Zhang X, Dou H, et al. Study on the target recognition and location technology of industrial sorting robot based on machine vision[J]. Journal of Robotics, Networking & Artificial Life, 2015,2(2):108-110
    [3] Pirahansiah F, Abdullah S N H S, Sahran S. Camera calibration for multi-modal robot vision based on image quality assessment[C]//Control Conference. IEEE, 2015:1-6
    [4] Hassen R, Wang Z, Salama M M A. Objective quality assessment for multiexposure multifocus image fusion[J]. IEEE Transactions on Image Processing, 2015,24(9):2712-2724
    [5] 褚江,陈强,杨曦晨.全参考图像质量评价综述[J]. 计算机应用研究, 2014, 31(1):13-22 Chu J, Chen Q, Yang X C. Review on full reference image quality assessment algorithms[J]. Application Research of Computers, 2014,31(1):13-22(in Chinese)
    [6] 沈军民, 李俊峰, 戴文战. 结合结构信息和亮度统计的无参考图像质量评价[J]. 电子学报, 2016,44(4):804-812 Shen J M, Li J F, Dai W Z. No-Reference Image Quality Assessment Based on Structure Information and Luminance Statistics[J]. Acta Electronica Sinica, 2016,44(4):804-812(in Chinese)
    [7] Zhou W, Jiang G, Yu M, et al. Reduced-reference stereoscopic image quality assessment based on view and disparity zero-watermarks[J]. Signal Processing:Image Communication, 2014,29(1):167-176
    [8] Zhang L, Zhang L, Mou X, et al. A comprehensive evaluation of full reference image quality assessment algorithms[C]//IEEE International Conference on Image Processing. IEEE, 2013:1477-1480
    [9] 王翔, 丁勇. 基于Gabor滤波器的全参考图像质量评价方法[J]. 浙江大学学报(工学版), 2013,47(3):422-430 Wang X, Ding Y. Full reference image quality assessment based on Gabor filter[J]. Journal of Zhejiang University(Engineering Science), 2013,47(3):422-430(in Chinese)
    [10] 李丽君, 李建伟. 基于频域互信息的全参考图像质量评价[J]. 火力与指挥控制,2014,39(S1):16-18+21 Li L J, Li J W. A full reference IQA method based on spectral mutual information[J]. Fire Control & Command Control,2014,39(S1):16-18+21(in Chinese)
    [11] 闻新,张婉怡,王嘉轶,等.基于视觉感知的全参考图像质量评价算法[J].电子测量与仪器学报,2016,30(11):1780-1789 Wen X, Zhang W Y, Wang J Y, et al. Full-reference image quality assessment algorithm based on visual perception[J]. Journal of Electronic Measurement and Instrumentation, 2016,30(11):1780-1789(in Chinese)
    [12] 闫钧华,朱可,张婉怡,等.基于显著性图像边缘的全参考图像质量评价[J].仪器仪表学报,2016,37(9):2140-2148 Yan J H, Zhu K, Zhang W Y, et al. Full reference image quality assessment based on the edge of saliency image[J]. Chinese Journal of Scientific Instrument, 2016,37(9):2140-2148(in Chinese)
    [13] 温阳,夏小妹,杨琳.基于视觉注意的全参考彩色图像质量评价方法[J].计算机测量与控制,2017,25(6):279-281+293 Wen Y, Xia X M, Yang L. Full-reference color image quality assessment based on visual attention[J]. Computer Measurement & Control, 2017,25(6):279-281+293(in Chinese)
    [14] Wang Z, Simoncelli E P, Bovik A C. Multiscale structural similarity for image quality assessment[C]//Signals, Systems and Computers, 2004. Conference Record of the Thirty-Seventh Asilomar Conference on. IEEE, 2004:1398-1402 Vol.2
    [15] Sheikh H R, Bovik A C. Image information and visual quality[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2006,15(2):430-444
    [16] Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004,13(4):600-612
    [17] Sheikh H R, Bovik A C, Veciana G D. An information fidelity criterion for image quality assessment using natural scene statistics[J]. IEEE Transactions on Image Processing, 2005,14(12):2117-2128
  • 加载中
计量
  • 文章访问数:  317
  • HTML全文浏览量:  49
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-06
  • 刊出日期:  2018-04-05

目录

    /

    返回文章
    返回