留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

下肢外骨骼助力机器人本体结构设计与运动学分析

汪步云 汪志红 许德章

汪步云, 汪志红, 许德章. 下肢外骨骼助力机器人本体结构设计与运动学分析[J]. 机械科学与技术, 2018, 37(4): 553-559. doi: 10.13433/j.cnki.1003-8728.2018.0410
引用本文: 汪步云, 汪志红, 许德章. 下肢外骨骼助力机器人本体结构设计与运动学分析[J]. 机械科学与技术, 2018, 37(4): 553-559. doi: 10.13433/j.cnki.1003-8728.2018.0410
Wang Buyun, Wang Zhihong, Xu Dezhang. Mechanical Design and Kinematics Analysis on a Wearable Power-assisted Robot for Lower Extremity Exoskeleton[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(4): 553-559. doi: 10.13433/j.cnki.1003-8728.2018.0410
Citation: Wang Buyun, Wang Zhihong, Xu Dezhang. Mechanical Design and Kinematics Analysis on a Wearable Power-assisted Robot for Lower Extremity Exoskeleton[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(4): 553-559. doi: 10.13433/j.cnki.1003-8728.2018.0410

下肢外骨骼助力机器人本体结构设计与运动学分析

doi: 10.13433/j.cnki.1003-8728.2018.0410
基金项目: 

国家自然科学基金项目(61741101)、安徽省自然科学基金项目(1608085QF154)、安徽省科技攻关项目(1604a0902125)及安徽工程大学引进人才科研启动基金(2015YQQ005)资助

详细信息
    作者简介:

    汪步云(1984-),讲师,博士,研究方向为机器人信息感知,ayun@ahpu.edu.cn

    通讯作者:

    许德章,教授,博士,dzx@ahpu.edu.cn

Mechanical Design and Kinematics Analysis on a Wearable Power-assisted Robot for Lower Extremity Exoskeleton

  • 摘要: 下肢外骨骼助力机器人是一种可以拓展人体关节机能,并可在特殊环境下作业的人机共融型机器人。基于人体下肢生物力学特点,阐述了下肢外骨骼助力机器人的机构设计原理及过程,分析了外骨骼机构的运动学关系,通过ADAMS匹配外骨骼与关节驱动范围并进行了机构优化,可以完成人体的代表性深蹲动作,为外骨骼助力行走留有较大的关节运动裕量,虚拟样机联合仿真也验证了外骨骼助力机器人的设计可行性。
  • [1] Yan T F, Cempini M, Oddo C M, et al. Review of assistive strategies in powered lower-limb orthoses and exoskeletons[J]. Robotics and Autonomous Systems, 2015,64:120-136
    [2] 管小荣,吴夷杉,王亚平,等.下肢外骨骼人机耦合粗糙度的评价方法[J].机械科学与技术,2017,36(9):1327-1332 Guan X R, Wu Y S, Wang Y P, et al. A method for evaluating man's lower extremity exoskeleton coupling surface roughness[J]. Mechanical Science and Technology for Aerospace Engineering, 2017,36(9):1327-1332(in Chinese)
    [3] Lo H S, Xie S Q. Exoskeleton robots for upper-limb rehabilitation:state of the art and future prospects[J]. Medical Engineering & Physics, 2012,34(3):261-268
    [4] Jimeénez-Fabián R, Verlinden O. Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons[J]. Medical Engineering & Physics, 2012,34(4):397-408
    [5] 欧阳小平,范伯骞,丁硕.助力型下肢外骨骼机器人现状及展望[J].科技导报,2015,33(23):92-99 Ouyang X P, Fan B Q, Ding S. Status and prospects of the lower extremity exoskeleton robots for human power augmentation[J]. Science & Technology Review, 2015,33(23):92-99(in Chinese)
    [6] Zoss A B, Kazerooni H, Chu A. Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX)[J]. IEEE/ASME Transactions on Mechatronics, 2006,11(2):128-138
    [7] Hyon S H, Hayashi T, Yagi A, et al. Design of hybrid drive exoskeleton robot XoR2[C]//Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan:IEEE, 2013:4642-4648
    [8] 张霞,胡晋嘉,罗天洪,等.穿戴式步行辅助机器人的混合控制方法及其稳定性[J].机器人,2017,39(4):489-497 Zhang X, Hu J J, Luo T H, et al. A hybrid control method for a wearable walking-assist robot and its stability[J]. Robot, 2017,39(4):489-497(in Chinese)
    [9] 邹晓峰.士兵在负重行军时步态的生物力学特征[D].北京:北京体育大学,2010 Zou X F. The biomechanical characteristics of gait during soldiers' loads march[D]. Beijing:Beijing Sport University, 2010(in Chinese)
    [10] Riener R, Rabuffetti M, Frigo C. Stair ascent and descent at different inclinations[J]. Gait & Posture, 2002,15(1):32-44
    [11] Wang Z H, Wang B Y, Xu D Z. Design and simulation of a lower-limb power-assist exoskeleton for hip joint based on deep squat[C]//Proceedings of 2016 IEEE International Conference on Information and Automation, Ningbo, China:IEEE, 2016:865-869
    [12] Rajagopal A, Dembia C L, DeMers M S, et al. Full-body musculoskeletal model for muscle-driven simulation of human gait[J]. IEEE Transactions on Biomedical Engineering, 2016,63(10):2068-2079
    [13] Lee Y, Kim Y J, Lee J, et al. Biomechanical design of a novel flexible exoskeleton for lower extremities[J]. IEEE/ASME Transactions on Mechatronics, 2017,22(5):2058-2069
    [14] Rajagopal A, Dembia C L, DeMers M S, et al. Full-body musculoskeletal model for muscle-driven simulation of human gait[J]. IEEE Transactions on Biomedical Engineering, 2016,63(10):2068-2079
    [15] Liu Y J, Song Q J, Wang B Y, et al. Design of a novel gait simulator for rehabilitation training[J]. Sensors & Transducers, 2013,150(3):90-96
  • 加载中
计量
  • 文章访问数:  307
  • HTML全文浏览量:  26
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-01
  • 刊出日期:  2018-04-05

目录

    /

    返回文章
    返回