留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结构可靠性界限计算的包络面方法

梁振彬 董聪

梁振彬, 董聪. 结构可靠性界限计算的包络面方法[J]. 机械科学与技术, 2018, 37(4): 501-504. doi: 10.13433/j.cnki.1003-8728.2018.0402
引用本文: 梁振彬, 董聪. 结构可靠性界限计算的包络面方法[J]. 机械科学与技术, 2018, 37(4): 501-504. doi: 10.13433/j.cnki.1003-8728.2018.0402
Liang Zhenbin, Dong Cong. Envelope Surface Method for Computing Structural Reliability Boundary[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(4): 501-504. doi: 10.13433/j.cnki.1003-8728.2018.0402
Citation: Liang Zhenbin, Dong Cong. Envelope Surface Method for Computing Structural Reliability Boundary[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(4): 501-504. doi: 10.13433/j.cnki.1003-8728.2018.0402

结构可靠性界限计算的包络面方法

doi: 10.13433/j.cnki.1003-8728.2018.0402
基金项目: 

国家电网公司科技项目(GC71-12-001)资助

详细信息
    作者简介:

    梁振彬(1992-),硕士研究生,研究方向为结构可靠性理论,liangzhenbin1992@163.com

    通讯作者:

    董聪,教授,博士生导师,dongcong@tsinghua.edu.cn

Envelope Surface Method for Computing Structural Reliability Boundary

  • 摘要: 在结构二次二阶矩可靠性指标计算方法的基础上,结合包络面的思想,提出了基于包络面的结构可靠性界限计算方法。该方法在最可几失效域以旋转抛物面作为结构极限状态曲面的内外包络面,通过计算包络面的失效概率确定结构可靠性界限区间,并通过两个算例验证了该方法的可行性和计算精度。算例结果表明,该方法计算结果最接近蒙特卡洛方法的结果,相对误差小,计算精度高,具有工程实用价值。
  • [1] Rashki M, Miri M, Moghaddam M A. A new efficient simulation method to approximate the probability of failure and most probable point[J]. Structural Safety, 2012,39:22-29
    [2] Valdebenito M A, Pradlwarter H J, Schuëler G I. The role of the design point for calculating failure probabilities in view of dimensionality and structural nonlinearities[J]. Structural Safety, 2010,32(2):101-111
    [3] Hasofer A M, Lind N C. Exact and invariant second-moment code format[J]. Journal of the Engineering Mechanics Division, 1974,100(1):111-121
    [4] Huang J S, Griffiths D V. Observations on FORM in a simple geomechanics example[J]. Structural Safety, 2011,33(1):115-119
    [5] Cho S E. First-order reliability analysis of slope considering multiple failure modes[J]. Engineering Geology, 2013,154:98-105
    [6] Keshtegar B, Meng Z. A hybrid relaxed first-order reliability method for efficient structural reliability analysis[J]. Structural Safety, 2017,66:84-93
    [7] Fiessler B, Neumann H J, Rackwitz R. Quadratic limit states in structural reliability[J]. Journal of the Engineering Mechanics Division, 1979,105(4):661-676
    [8] Zhao Y G, Ono T. New approximations for SORM:Part 1[J]. Journal of Engineering Mechanics, 1999,125(1):79-85
    [9] Adhikari S. Reliability analysis using parabolic failure surface approximation[J]. Journal of Engineering Mechanics, 2004,130(12):1407-1427
    [10] Chan C L, Low B K. Practical second-order reliability analysis applied to foundation engineering[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012,36(11):1387-1409
    [11] 白冰,张清华,李乔.结构二次二阶矩可靠度指标的回归分析预测算法[J].工程力学,2013,30(10):219-226,235 Bai B, Zhang Q H, Li Q. Regression analysis-prediction algorithm for structural second-order second-monment reliability index evaluation[J]. Engineering Mechanics, 2013,30(10):219-226,235(in Chinese)
    [12] Breitung K. Asymptotic approximations for multinormal integrals[J]. Journal of Engineering Mechanics, 1984,110(3):357-366
    [13] Tvedt L. Distribution of quadratic forms in normal space-application to structural reliability[J]. Journal of Engineering Mechanics, 1990,116(6):1183-1197
    [14] 董聪.现代结构系统可靠性理论及其应用[M].北京:科学出版社,2001 Dong C. Reliability theory and its applications to modern structure systems[M]. Beijing:Science Press, 2001(in Chinese)
  • 加载中
计量
  • 文章访问数:  282
  • HTML全文浏览量:  51
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-15
  • 刊出日期:  2018-04-05

目录

    /

    返回文章
    返回