留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

尺寸公差的区间描述及不确定性优化

廖代辉 卿宏军 姜潮 谢慧超 张智罡

廖代辉, 卿宏军, 姜潮, 谢慧超, 张智罡. 尺寸公差的区间描述及不确定性优化[J]. 机械科学与技术, 2018, 37(2): 280-286. doi: 10.13433/j.cnki.1003-8728.2018.0219
引用本文: 廖代辉, 卿宏军, 姜潮, 谢慧超, 张智罡. 尺寸公差的区间描述及不确定性优化[J]. 机械科学与技术, 2018, 37(2): 280-286. doi: 10.13433/j.cnki.1003-8728.2018.0219
Liao Daihui, Qing Hongjun, Jiang Chao, Xie Huichao, Zhang Zhigang. An Interval Description and Uncertainty Optimization Method for Dimension Tolerance[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(2): 280-286. doi: 10.13433/j.cnki.1003-8728.2018.0219
Citation: Liao Daihui, Qing Hongjun, Jiang Chao, Xie Huichao, Zhang Zhigang. An Interval Description and Uncertainty Optimization Method for Dimension Tolerance[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(2): 280-286. doi: 10.13433/j.cnki.1003-8728.2018.0219

尺寸公差的区间描述及不确定性优化

doi: 10.13433/j.cnki.1003-8728.2018.0219
基金项目: 

国家自然科学优秀青年基金项目(51222502)、教育部新世纪优秀人才支持项目(NCET-11-0124)、全国优博专项资金项目(201235)及汽车车身先进设计制造国家重点实验室开放基金项目(31515010)资助

详细信息
    作者简介:

    廖代辉(1978-),讲师,博士后,研究方向为车辆工程,liaodaihui@163.com

    通讯作者:

    卿宏军,高级工程师,硕士,qinghongjun@hnu.edu.cn

An Interval Description and Uncertainty Optimization Method for Dimension Tolerance

  • 摘要: 利用区间模型对尺寸公差进行描述,构建了一种基于尺寸公差的区间优化方法,实现了基本尺寸及其公差的同步优化。本方法以基本尺寸和公差为设计变量,以尺寸公差最大化为设计目标,以决策者对机械系统的性能要求及原问题的最严限制性条件为约束,建立区间优化模型。通过区间中点和区间右边界,将不确定性区间优化模型中的目标函数与约束进行确定性转换。有效解决了在机械系统给定性能水平及其固有约束条件下,求解关键零部件最优基本尺寸与最低成本尺寸公差的问题。该方法已被应用于数值算例及工程实例。
  • [1] Zhang G, Porehet M. An investigation into mathe-matieal model of operatimal tolerancing supporting concurrent engineering[R]. San Diego:ASME, 1993
    [2] Hubka V. Design for quality and design methodology[J]. Journal of Engineering Design, 1992,3(1):5-15
    [3] 刘明周,赵志彪,凌先姣,等.基于最短路径的复杂机械产品装配过程质量控制点公差带在线优化方法[J].机械工程学报,2012,48(10):173-177 Liu M Z, Zhao Z B, Ling X J, et al. Research on online tolerance optimization for complex mechanical products assembly process based on shortest path[J]. Journal of Mechanical Engineering, 2012,48(10):173-177(in Chinese)
    [4] 方红芳,何勇,汪慰军,等.计算机辅助公差设计方法学[J].机械科学与技术,2000,19(5):714-716 Fang H F, He Y, Wang W J, et al. Methodology of computer aided tolerance design[J]. Mechanical Science and Technology, 2000,19(5):714-716(in Chinese)
    [5] Roy U, Liu C R, Woo T C. Review of dimensioning and tolerancing:representation and processing[J]. Computer-Aided Design, 1991,23(7):466-483
    [6] Chase K W, Parkinson A R. A survey of research in the application of tolerance analysis to the design of mechanical assemblies[J]. Research in Engineering Design, 1991,3(1):23-37
    [7] Peters J. Tolerancing the components of an assembly for minimum cost[J]. Journal of Engineering for Industry, 1970,92(3):677-682
    [8] Ngoi B K A, Ong C T. Optimum assembly using a component dimensioning method[J]. The International Journal of Advanced Manufacturing Technology, 1996,11(3):172-178
    [9] Tagushi G, Wu Y. Introduction to off-line quality control[R]. Nagoya:Central Japan Quality Control Association, 1979
    [10] 曹衍龙,金岳辉.基于双响应面法的公差设计研究[J].工程设计,2000,7(3):42-44 Cao Y L, Jin Y H. Robust tolerance design by response surface methodology[J]. Engineering Design, 2000,7(3):42-44(in Chinese)
    [11] 蔡敏,杨将新,吴昭同.方差分析法在鲁棒公差设计中的应用[J].工程设计,2001,8(1):25-27 Cai M, Yang J X, Wu Z T. Variance analysis in robust tolerance design[J]. Engineering Design, 2001,8(1):25-27(in Chinese)
    [12] Ishibuchi H, Tanaka H. Multiobjective programming in optimization of the interval objective function[J]. European Journal of Operational Research, 1990,48(2):219-225
    [13] Chanas S, Kuchta D. Multiobjective programming in optimization of interval objective functions-a generalized approach[J]. European Journal of Operational Research, 1996,94(3):594-598
    [14] SEngupta A, Pal T K. On comparing interval numbers[J]. European Journal of Operational Research, 2000,127(1):28-43
    [15] Qiu Z P. Comparison of static response of structures using convex models and interval analysis method[J]. International Journal for Numerical Methods in Engineering, 2003,56(12):1735-1753
    [16] 吴杰,陈塑寰.区间参数振动系统的动力优化[J].力学学报,2003,35(3):373-376 Wu J, Chen S H. Dynamic optimization for vibration system with interval parameters[J]. Acta Mechanica Sinica, 2003,35(3):373-376(in Chinese)
    [17] 姬芬竹,高峰,吴志新.纯电动汽车传动系参数的区间优化方法[J].农业机械学报,2006,37(3):5-7 Ji F Z, Gao F, Wu Z X. Interval optimization method of power train parameters in pure electric vehicles[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006,37(3):5-7(in Chinese)
    [18] Jiang C, Xie H C, Zhang Z G, et al. A new interval optimization method considering tolerance design[J]. Engineering Optimization, 2015,47(12):1637-1650
    [19] 姜潮.基于区间的不确定性优化理论与算法[D].长沙:湖南大学,2008 Jiang C. Theories and algorithms of uncertain optimization based on interval[D]. Changsha:Hunan University, 2008(in Chinese)
    [20] Jiang C, Han X, Liu G R, et al. A nonlinear interval number programming method for uncertain optimization problems[J]. European Journal of Operational Research, 2008,188(1):1-13
    [21] 谢慧超.关键汽车结构性能指标的区间不确定性优化设计[D].长沙:湖南大学,2014 Xie H C. Optimization design for key structure performance indicators of vehicle based on interval uncertainty[D]. Changsha:Hunan University, 2014(in Chinese)
    [22] Dong Z, Hu W, Xue D. New production cost-tolerance models for tolerance synthesis[J]. Journal of Engineering for Industry, 1994,116(2):199-206
    [23] 杨将新,吴昭同.机械加工成本-公差建模技术的研究[J].浙江大学学报(自然科学版),1996,30(5):517-522 Yang J X, Wu Z T. A study on modelling techniques for product cost-tolerance[J]. Journal of Zhejiang University (Natural Science), 1996,30(5):517-522(in Chinese)
    [24] 张宇,杨慕升,李晓沛.面向质量目标的尺寸链和统计公差设计方法[J].机械工程学报,2007,43(4):1-6 Zhang Y, Yang M S, Li X P. Quality-oriented design approach of dimensional chain and statistical tolerance[J]. Chinese Journal of Mechanical Engineering, 2007,43(4):1-6(in Chinese)
    [25] 肖人彬,陶振武,邹洪富.基于混合群集智能算法的并行公差优化设计[J].计算机集成制造系统,2007,13(4):668-674,691 Xiao R B, Tao Z W, Zou H F. Concurrent tolerance optimization design based on hybrid swarm intelligence algorithm[J]. Computer Integrated Manufacturing Systems, 2007,13(4):668-674,691(in Chinese)
    [26] Zhang G, Wang H P, Li J K. Simultaneous optimization of design and manufacturing-tolerances with process (machine) selection[J]. CIRP Annals, 1992,41(1):569-572
    [27] 方红芳,吴昭同.并行公差设计与工艺路线技术经济评价方法[J].机械工程学报,2000,36(4):74-77,85 Fang H F, Wu Z T. Concurrent tolerance design and methods of technology economy assessment in process route[J]. Chinese Journal of Mechanical Engineering, 2000,36(4):74-77,85(in Chinese)
    [28] Moore R E. Methods and applications of interval analysis[M]. London:Prentice-Hall Inc., 1979
    [29] Kall P. Stochastic programming[J]. European Journal of Operational Research, 1982,10(2):125-130
    [30] Cho G M. Log-barrier method for two-stage quadratic stochastic programming[J]. Applied Mathematics and Computation, 2005,164(1):45-69
    [31] 姜潮,邓善良.考虑车辆高速和低速耐撞性的多目标优化设计[J].计算力学学报,2014,31(4):474-479 Jiang C, Deng S L. Multi-objective optimization and design considering automotive high-speed and low-speed crashworthiness[J]. Chinese Journal of Computational Mechanics, 2014,31(4):474-479(in Chinese)
    [32] 廖代辉,成艾国,钟志华.基于变复杂度近似模型的汽车安全性和轻量化优化[J].中国机械工程,2013,24(15):2118-2121,2129 Liao D H, Cheng A G, Zhong Z H. Study on optimization for automobile safety and lightweight based on variable complexity approximate model[J]. China Mechanical Engineering, 2013,24(15):2118-2121,2129(in Chinese)
  • 加载中
计量
  • 文章访问数:  216
  • HTML全文浏览量:  30
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-02
  • 刊出日期:  2018-02-25

目录

    /

    返回文章
    返回