留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑关节动力学优化的机器人复杂轨迹规划

周友行 石弦韦 孔拓 刘疏 周后明

周友行, 石弦韦, 孔拓, 刘疏, 周后明. 考虑关节动力学优化的机器人复杂轨迹规划[J]. 机械科学与技术, 2018, 37(2): 232-236. doi: 10.13433/j.cnki.1003-8728.2018.0211
引用本文: 周友行, 石弦韦, 孔拓, 刘疏, 周后明. 考虑关节动力学优化的机器人复杂轨迹规划[J]. 机械科学与技术, 2018, 37(2): 232-236. doi: 10.13433/j.cnki.1003-8728.2018.0211
Zhou Youhang, Shi Xianwei, Kong Tuo, Liu Shu, Zhou Houming. Complex Robot Trajectory Planning with Consideration of Joint-torque Dynamics Problem[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(2): 232-236. doi: 10.13433/j.cnki.1003-8728.2018.0211
Citation: Zhou Youhang, Shi Xianwei, Kong Tuo, Liu Shu, Zhou Houming. Complex Robot Trajectory Planning with Consideration of Joint-torque Dynamics Problem[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(2): 232-236. doi: 10.13433/j.cnki.1003-8728.2018.0211

考虑关节动力学优化的机器人复杂轨迹规划

doi: 10.13433/j.cnki.1003-8728.2018.0211
基金项目: 

国家自然科学基金项目(51375419,51375418)与湖南省自然科学基金项目(2016JJ2134)资助

详细信息
    作者简介:

    周友行(1971-),教授,博士生导师,博士,研究方向为数字化设计与制造,机器人学,zhouyouhang@xtu.edu.cn

Complex Robot Trajectory Planning with Consideration of Joint-torque Dynamics Problem

  • 摘要: 考虑到关节型机器人工作时关节力矩变化对工作质量的影响,针对机器人复杂工作中各关节受力平稳性控制问题,本文提出改进直接配点法优化求解复杂轨迹上机器人关节动力学问题。在对机器人动力学模型进行分析的基础上,使用直接配点法将沿复杂轨迹运动的机器人动力学优化求解问题转化为非线性方程组的多目标优化求解问题,并采用序列二次规划算法求解;针对方程组中高度非凸函数极值求解过程中对初值敏感的问题,采用线性二次调节器为序列二次规划算法提供迭代初值。理论分析和数值仿真结果表明:提出的算法可保证机器人各关节在复杂轨迹上力矩、角度及角速度变化平缓,稳定工作质量,同时也能更合理地控制机器人工作时的能耗水平。
  • [1] 朱华征,范大鹏,张文博,等.质量不平衡力矩对导引头伺服机构性能影响分析[J].红外与激光工程,2009,38(5):767-772 Zhu H Z, Fan D P, Zhang W B, et al. Influence analysis of the mass imbalance torque on the performance of seeker servo mechanism[J]. Infrared and Laser Engineering, 2009,38(5):767-772(in Chinese)
    [2] 周友行,张建勋,董银松.点焊机器人复杂轨迹逆运动学组合优化求解[J].焊接学报,2010,31(9):21-24,114 Zhou Y H, Zhang J X, Dong Y S. An optimization algorithm for combination inverse kinematics problems of welding robot in complex trajectory[J]. Transactions of the China Welding Institution, 2010,31(9):21-24,114(in Chinese)
    [3] Pfeiffer S, Angulo C. Gesture learning and execution in a humanoid robot via dynamic movement primitives[J]. Pattern Recognition Letters, 2015,67:100-107
    [4] Park G, Tani J. Development of compositional and contextual communicable congruence in robots by using dynamic neural network models[J]. Neural Networks, 2015,72:109-122
    [5] Zhang N, Shang W W. Dynamic trajectory planning of a 3-DOF under-constrained cable-driven parallel robot[J]. Mechanism and Machine Theory, 2016,98:21-35
    [6] Kumar E V, Jerome J. Robust LQR controller design for stabilizing and trajectory tracking of inverted pendulum[J]. Procedia Engineering, 2013,64:169-178
    [7] Tahirovic A, Magnani G. A Roughness-based RRT for mobile robot navigation planning[J]. IFAC Proceedings Volumes, 2011,44(1):5944-5949
    [8] Thanh T D, Kotlarski J, Heimann B, et al. Dynamics identification of kinematically redundant parallel robots using the direct search method[J]. Mechanism and Machine Theory, 2012,55:104-121
    [9] Edeling W N, Dwight R P, Cinnella P. Simplex-stochastic collocation method with improved scalability[J]. Journal of Computational Physics, 2016,310:301-328
    [10] Christodoulou C A, Vita V, Ekonomou L, et al. Application of Powell's optimization method to surge arrester circuit models' parameters[J]. Energy, 2010,35(8):3375-3380
    [11] Zhang P, Sun Q, Xiao W L. Parameter identification in mixed Brownian-fractional Brownian motions using Powell's optimization algorithm[J]. Economic Modelling, 2014,40:314-319
    [12] Niku S B. Introduction to robotics:analysis, systems, applications[M]. Hoboken, NJ:Wiley, 2011
    [13] Hargraves C R, Paris S W. Direct trajectory optimization using nonlinear programming and collocation[J]. Journal of Guidance, Control, and Dynamics, 1987,10(4):338-342
    [14] Paul J, Bruce A. Optimal finite-thrust spacecraft trajectories using collocation and nonlinear programming[J]. Journal of Guidance, Control, and Dynamics, 1991,14(5):981-985
    [15] Kumar E V, Jerome J. Robust LQR controller design for stabilizing and trajectory tracking of inverted pendulum[J]. Procedia Engineering, 2013,64:169-178
    [16] Wang L, Ni H Q, Zhou W F, et al. MBPOA-based LQR controller and its application to the double-parallel inverted pendulum system[J]. Engineering Applications of Artificial Intelligence, 2014,36:262-268
  • 加载中
计量
  • 文章访问数:  192
  • HTML全文浏览量:  21
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-07
  • 刊出日期:  2018-02-25

目录

    /

    返回文章
    返回