留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

细观力学模型预测复合材料横向强度性能研究

彭湃 赵美英 王文智

彭湃, 赵美英, 王文智. 细观力学模型预测复合材料横向强度性能研究[J]. 机械科学与技术, 2017, 36(10): 1611-1618. doi: 10.13433/j.cnki.1003-8728.2017.1021
引用本文: 彭湃, 赵美英, 王文智. 细观力学模型预测复合材料横向强度性能研究[J]. 机械科学与技术, 2017, 36(10): 1611-1618. doi: 10.13433/j.cnki.1003-8728.2017.1021
Peng Pai, Zhao Meiying, Wang Wenzhi. Transverse Strength Prediction of Composite Materials Via Micromechanics Model[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(10): 1611-1618. doi: 10.13433/j.cnki.1003-8728.2017.1021
Citation: Peng Pai, Zhao Meiying, Wang Wenzhi. Transverse Strength Prediction of Composite Materials Via Micromechanics Model[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(10): 1611-1618. doi: 10.13433/j.cnki.1003-8728.2017.1021

细观力学模型预测复合材料横向强度性能研究

doi: 10.13433/j.cnki.1003-8728.2017.1021
详细信息
    作者简介:

    彭湃(1990-),助理工程师,硕士研究生,研究方向为飞行器结构设计、冲击动力学研究与应用,pengpai1209@126.com

Transverse Strength Prediction of Composite Materials Via Micromechanics Model

  • 摘要: 为了研究纤维增强复合材料在横向拉压载荷下的力学性能,采用细观力学有限元法与随机扰动法建立了表述复合材料微观结构的纤维随机分布代表性体积单元。对于界面脱粘与基体塑性变形这两种主要的损伤模式,分别用界面内聚力单元模型、基体Drucker-Prager弹塑性模型模拟,并结合塑性失效准则模拟基体的初始损伤与断裂,得出了材料在外载作用下的渐进损伤过程,并与试验结果进行了对比验证。此外,还总结了界面刚度、界面强度、界面断裂能等细观参数对损伤本构的影响规律。
  • [1] 杜善义.复合材料细观力学[M].北京:国防工业出版社,1995 Du S Y. Micromechanics of composite materials[M]. Beijing:National Defense Industry Press, 1995(in Chinese)
    [2] Sun C T, Vaidya R S. Prediction of composite properties from a representative volume element[J]. Composites Science and Technology, 1996,56(2):171-179
    [3] Li S. General unit cells for micromechanical analyses of unidirectional composites[J]. Composites Part A:Applied Science and Manufacturing, 2001,32(6):815-826
    [4] Weibull W. A statistical distribution function of wide applicability[J]. Journal of Applied Mechanics, 1951,18(3):293-297
    [5] Wongsto A, Li S. Micromechanical FE analysis of UD fibre-reinforced composites with fibres distributed at random over the transverse cross-section[J]. Composites Part A:Applied Science and Manufacturing, 2005,36(9):1246-1266
    [6] 刘玉佳.飞行器复合材料结构热-力学性能理论分析与试验研究[D].北京:北京航空航天大学,2014 Liu Y J. Theoretical analysis and experimental research of aircraft composites structure's thermo dynamical performance[D]. Beijing:Beijing University of Aeronautics and Astronautics, 2014(in Chinese)
    [7] González C, LLorca J. Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression:microscopic mechanisms and modeling[J]. Composites Science and Technology, 2007,67(13):2795-2806
    [8] 潘自民.单向复合材料界面对其力学性能影响的研究[D].哈尔滨:哈尔滨工业大学,2010 Pan Z M. Research of the Effect of interface on the mechanical properties of unidirectional fiber reinforced composites[D]. Harbin:Harbin Institute of Technology, 2010(in Chinese)
    [9] Xia Z H, Zhou C W, Yong Q L, et al. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites[J]. International Journal of Solids and Structures, 2006,43(2):266-278
    [10] Soden P D, Hinton M J, Kaddour A S. Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates[J]. Composites Science and Technology, 1998,58(7):1011-1022
    [11] Canal L P, González C, Segurado J, et al. Intraply fracture of fiber-reinforced composites:microscopic mechanisms and modeling[J]. Composites Science and Technology, 2012,72(11):1223-1232
    [12] Ogihara S, Koyanagi J. Investigation of combined stress state failure criterion for glass fiber/epoxy interface by the cruciform specimen method[J]. Composites Science and Technology, 2010,70(1):143-150
    [13] Melro A R, Camanho P P, Pires F M A, et al. Micromechanical analysis of polymer composites reinforced by unidirectional fibres:Part Ⅱ-Micromechanical analyses[J]. International Journal of Solids and Structures, 2013,50(11-12):1906-1915
    [14] Vaughan T J, McCarthy C T. Micromechanical modelling of the transverse damage behaviour in fibre reinforced composites[J]. Composites Science and Technology, 2011,71(3):388-396
    [15] Yang L, Yan Y, Liu Y J, et al. Microscopic failure mechanisms of fiber-reinforced polymer composites under transverse tension and compression[J]. Composites Science and Technology, 2012,72(15):1818-1825
    [16] Hibbit, Karlsson, Sorenson. ABAQUS theory manual[M]. Pawtucket, RI, USA:HKS Inc.; 2010
    [17] Fiedler B, Hojo M, Ochiai S, et al. Failure behavior of an epoxy matrix under different kinds of static loading[J]. Composites Science and Technology, 2001,61(11):1615-1624
    [18] Jordan J L, Foley J R, Siviour C R. Mechanical properties of Epon 826/DEA epoxy[J]. Mechanics of Time-Dependent Materials, 2008,12(3):249-272
    [19] Hobbiebrunken T, Hojo M, Adachi T, et al. Evaluation of interfacial strength in CF/epoxies using FEM and in-situ experiments[J]. Composites Part A:Applied Science and Manufacturing, 2006,37(12):2248-2256
  • 加载中
计量
  • 文章访问数:  248
  • HTML全文浏览量:  33
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-27
  • 刊出日期:  2017-10-05

目录

    /

    返回文章
    返回