留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种交叉遗传优化MHW的风电机组微弱特征提取方法

李冠瑾 刘文艺 高钦武

李冠瑾, 刘文艺, 高钦武. 一种交叉遗传优化MHW的风电机组微弱特征提取方法[J]. 机械科学与技术, 2017, 36(10): 1594-1597. doi: 10.13433/j.cnki.1003-8728.2017.1018
引用本文: 李冠瑾, 刘文艺, 高钦武. 一种交叉遗传优化MHW的风电机组微弱特征提取方法[J]. 机械科学与技术, 2017, 36(10): 1594-1597. doi: 10.13433/j.cnki.1003-8728.2017.1018
Li Guanjin, Liu Wenyi, Gao Qinwu. A Wind Turbine's Weak Feature Extraction Method Using Cross Genetic Optimized MHW[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(10): 1594-1597. doi: 10.13433/j.cnki.1003-8728.2017.1018
Citation: Li Guanjin, Liu Wenyi, Gao Qinwu. A Wind Turbine's Weak Feature Extraction Method Using Cross Genetic Optimized MHW[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(10): 1594-1597. doi: 10.13433/j.cnki.1003-8728.2017.1018

一种交叉遗传优化MHW的风电机组微弱特征提取方法

doi: 10.13433/j.cnki.1003-8728.2017.1018
基金项目: 

国家自然科学基金项目(51505202)、江苏省自然科学基金项目(BK20140238)、江苏省青蓝工程项目(2016)、江苏省大学生创新项目(201510320088Y)及江苏省研究生创新工程项目(KYCX17_1588)资助

详细信息
    作者简介:

    李冠瑾(1993-),硕士研究生,研究方向为风电机组故障诊断,447479806@qq.com

    通讯作者:

    刘文艺(联系人),副教授,博士,硕士生导师,liuwenyi1984@126.com

A Wind Turbine's Weak Feature Extraction Method Using Cross Genetic Optimized MHW

  • 摘要: 针对变速变载、闪电雷击、雨雪冰雹等恶劣工作环境干扰下风电机组微弱特征的提取困难问题,提出了一种基于交叉遗传优化MHW的微弱特征提取方法。该方法通过变形参数调整对MHW小波形状进行拟合匹配,并通过交叉遗传优化算法对该变形参数进行优化,进而通过连续小波变换提取匹配波形优化的微弱特征。通过风电场风电机组齿轮箱振动数据分析,验证了该方法可以较好地抑制强背景噪声干扰,提取风电机组微弱故障特征。
  • [1] Liu W Y, Tang B P, Han J G, et al. The structure healthy condition monitoring and fault diagnosis methods in wind turbines:a review[J]. Renewable and Sustainable Energy Reviews, 2015,44(C):466-472
    [2] 刘吴月,廖明夫,刘永伟,等.风电机组传动链模拟实验台设计与实现[J].机械科学与技术,2014,33(3):366-371 Liu W Y, Liao M F, Liu Y W, et al. Design of wind turbine drive train simulation platform[J]. Mechanical Science and Technology for Aerospace Engineering, 2014,33(3):366-371(in Chinese)
    [3] Liu W Y, Wang Z F, Han J G, et al. Wind turbine fault diagnosis method based on diagonal spectrum and clustering binary tree SVM[J]. Renewable Energy, 2013,50:1-6
    [4] Yang W X, Tavner P J, Court R. An online technique for condition monitoring the induction generators used in wind and marine turbines[J]. Mechanical Systems and Signal Processing, 2013,38(1):103-112
    [5] Feng Z P, Ma H Q, Zuo M J. Vibration signal models for fault diagnosis of planet bearings[J]. Journal of Sound and Vibration, 2016,370:372-393
    [6] 雷亚国,孔德同,李乃鹏,等.自适应总体平均经验模式分解及其在行星齿轮箱故障检测中的应用[J].机械工程学报,2014,50(3):64-70 Lei Y G, Kong D T, Li N P, et al. Adaptive ensemble empirical mode decomposition and its application to fault detection of planetary gearboxes[J]. Journal of Mechanical Engineering, 2014,50(3):64-70(in Chinese)
    [7] Oh K Y, Lee J K, Bang H J, et al. Development of a 20 kW wind turbine simulator with similarities to a 3 MW wind turbine[J]. Renewable Energy, 2014,62:379-387
    [8] Sun H L, Zi Y Y, He Z J. Wind turbine fault detection using multiwavelet denoising with the data-driven block threshold[J]. Applied Acoustics, 2014,77:122-129
    [9] Li J M, Chen X F, Du Z H, et al. A new noise-controlled second-order enhanced stochastic resonance method with its application in wind turbine drivetrain fault diagnosis[J]. Renewable Energy, 2013,60:7-19
    [10] Jiang Y H, Tang B P, Qin Y, et al. Feature extraction method of wind turbine based on adaptive Morlet wavelet and SVD[J]. Renewable Energy, 2011,36(8):2146-2153
    [11] 刘文艺,韩继光.基于混合时频分析方法的风电机组故障诊断[J].机械科学与技术,2013,32(1):96-99 Liu W Y, Han J G. Wind turbine fault diagnosis based on the hybrid time-frequency analysis method[J]. Mechanical Science and Technology for Aerospace Engineering, 2013,32(1):96-99(in Chinese)
    [12] Liu W Y, Han J G. The optimal Mexican hat wavelet filter de-noising method based on cross-validation method[J]. Neurocomputing, 2013,108:31-35
    [13] Huang H B, Li R X, Huang X R, et al. Sound quality evaluation of vehicle suspension shock absorber rattling noise based on the Wigner-Ville distribution[J]. Applied Acoustics, 2015,100:18-25
    [14] Chen J L, Li Z P, Pan J, et al. Wavelet transform based on inner product in fault diagnosis of rotating machinery:a review[J]. Mechanical Systems and Signal Processing, 2016,70-71:1-35
    [15] Pachori R B, Nishad A. Cross-terms reduction in the Wigner-Ville distribution using tunable-Q wavelet transform[J]. Signal Processing, 2016,120:288-304
  • 加载中
计量
  • 文章访问数:  176
  • HTML全文浏览量:  19
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-03
  • 刊出日期:  2017-10-05

目录

    /

    返回文章
    返回