留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平滑ARA*算法在智能车辆路径规划的应用

赵鑫 胡广地

赵鑫, 胡广地. 平滑ARA*算法在智能车辆路径规划的应用[J]. 机械科学与技术, 2017, 36(8): 1272-1275. doi: 10.13433/j.cnki.1003-8728.2017.0821
引用本文: 赵鑫, 胡广地. 平滑ARA*算法在智能车辆路径规划的应用[J]. 机械科学与技术, 2017, 36(8): 1272-1275. doi: 10.13433/j.cnki.1003-8728.2017.0821
Zhao Xin, Hu Guangdi. Application of Smoothing ARA* Algorithm in Intelligent Vehicles Path Planning[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(8): 1272-1275. doi: 10.13433/j.cnki.1003-8728.2017.0821
Citation: Zhao Xin, Hu Guangdi. Application of Smoothing ARA* Algorithm in Intelligent Vehicles Path Planning[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(8): 1272-1275. doi: 10.13433/j.cnki.1003-8728.2017.0821

平滑ARA*算法在智能车辆路径规划的应用

doi: 10.13433/j.cnki.1003-8728.2017.0821
基金项目: 

四川省科技计划项目(2016GZ0026)与西南交通大学研究生创新实验实践项目(YC201502109)资助

详细信息
    作者简介:

    赵鑫(1991-),硕士研究生,研究方向为路径规划算法、智能车控制,zhaoxin-swjtu@qq.com

    通讯作者:

    胡广地(联系人),教授,ghu@home.swjtu.edu.cn

Application of Smoothing ARA* Algorithm in Intelligent Vehicles Path Planning

  • 摘要: A*算法是一种经典的启发式搜索算法,广泛应用于智能车辆的路径规划问题。但A*算法效率低,不具有实时性。针对A*算法的缺点,改进得到一种高效、实时的路径搜索算法ARA*,ARA*算法首先在一个松弛的约束条件下快速搜索到一条次优路径;然后在规划时间内逐渐加强约束条件,利用已搜索过的节点信息连续改进次优解,直到找到最优解或规划时间结束。其次,针对ARA*算法得到的路径存在折线多、转折次数多等问题,对ARA*算法得到的路径进行基于关键点的平滑处理。给出了平滑ARA*算法流程,分析对比了各自的特点,通过栅格地图路径规划的MATLAB仿真结果验证了理论分析,同时仿真结果也说明平滑ARA*算法的高效性、实时性。
  • [1] 陈慧岩,熊光明,龚建伟,等.无人驾驶汽车概论[M].北京:北京理工大学出版社,2014 Chen H Y, Xiong G M, Gong J W, et al. Introduction to self-driving car[M]. Beijing:Beijing University of Technology Press, 2014(in Chinese)
    [2] 曲道奎,杜振军,徐殿国,等.移动机器人路径规划方法研究[J].机器人,2008,30(2):97-101,106 Qu D K, Du Z J, Xu D G, et al. Research on path planning for a mobile robot[J]. Robot, 2008,30(2):97-101,106(in Chinese)
    [3] Hart P E, Nilsson N J, Raphael B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968,4(2):100-107
    [4] Dechter R, Pearl J. Generalized best-first search strategies and the optimality of A*[J]. Journal of the ACM, 1985,32(3):505-536
    [5] Likhachev M, Ferguson D, Gordon G, et al. Anytime search in dynamic graphs[J]. Artificial Intelligence, 2008,172(14):1613-1643
    [6] Koenig S, Likhachev M, Furcy D. Lifelong planning A*[J]. Artificial Intelligence, 2004,155(1-2):93-146
    [7] 吴天羿,许继恒,刘建永,等.基于改进A*算法的越野路径规划研究[J].计算机应用研究,2013,30(6):1724-1726 Wu T Y, Xu J H, Liu J Y, et al. Research of cross-country path planning based on improved A* algorithm[J]. Application Research of Computers, 2013,30(6):1724-1726(in Chinese)
    [8] 谭宝成,王培.A*路径规划算法的改进及实现[J].西安工业大学学报,2012,32(4):325-329 Tan B C, Wang P. Improvement and implementation of A* path planning algorithm[J]. Journal of Xi'an Technological University, 2012,32(4):325-329(in Chinese)
    [9] 王殿君.基于改进A*算法的室内移动机器人路径规划[J].清华大学学报(自然科学版),2012,52(8):1085-1089 Wang D J. Indoor mobile-robot path planning based on an improved A* algorithm[J]. Journal of Tsinghua University (Science & Technology), 2012,52(8):1085-1089(in Chinese)
    [10] Ebendt R, Drechsler R. Weighted A* search-unifying view and application[J]. Artificial Intelligence, 2009,173(14):1310-1342
    [11] Likhachev M, Gordon G, Thrun S. ARA*:formal analysis[R]. Technical Report of the Carnegie Mellon University, Pittsburgh:Carnegie Mellon University, 2003
    [12] Likhachev M, Gordon G J, Thrun S. ARA*:anytime A* with provable bounds on sub-optimality[M]//Thrun S, Saul L, Schölkopf B. Advances in Neural Information Processing Systems, Vol. 16. Cambridge, MA:MIT Press, 2004
    [13] 王红卫,马勇,谢勇,等.基于平滑A*算法的移动机器人路径规划[J].同济大学学报(自然科学版),2010,38(11):1647-1650,1655 Wang H W, Ma Y, Xie Y, et al. Mobile robot optimal path planning based on smoothing A* algorithm[J]. Journal of Tongji University (Natural Science), 2010,38(11):1647-1650,1655(in Chinese)
    [14] 单伟,孟正大.基于改进A*算法的平滑路径设计[J].东南大学学报(自然科学版),2010,40(S1):155-161 Shan W, Meng Z D. Smooth path design for mobile service robots based on improved A* algorithm[J]. Journal of Southeast University (Natural Science Edition), 2010,40(S1):155-161(in Chinese)
    [15] 张豫南,闫永宝.基于平滑A*算法的6×6轮式车最优路径规划[J].制造业自动化,2012,34(13):1-4,14 Zhang Y N, Yan Y B. 6×6 Wheeled vehicle optimal path planning based on smoothing A* algorithm[J]. Manufacturing Automation, 2012,34(13):1-4,14(in Chinese)
    [16] Xie Y, Cheng W S. AGV path planning based on smoothing A* algorithm[J]. International Journal of Software Engineering & Applications, 2015,6(5):1-8
  • 加载中
计量
  • 文章访问数:  373
  • HTML全文浏览量:  47
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-11
  • 刊出日期:  2017-08-05

目录

    /

    返回文章
    返回