留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用局部约束的半转翼驱动机构运动误差分析及其结构参数优化

王孝义 汪辉兴 邱晗 陈富强 邱支振

王孝义, 汪辉兴, 邱晗, 陈富强, 邱支振. 采用局部约束的半转翼驱动机构运动误差分析及其结构参数优化[J]. 机械科学与技术, 2017, 36(6): 978-984. doi: 10.13433/j.cnki.1003-8728.2017.0626
引用本文: 王孝义, 汪辉兴, 邱晗, 陈富强, 邱支振. 采用局部约束的半转翼驱动机构运动误差分析及其结构参数优化[J]. 机械科学与技术, 2017, 36(6): 978-984. doi: 10.13433/j.cnki.1003-8728.2017.0626
Wang Xiaoyi, Wang Huixing, Qiu han, Chen Fuqiang, Qiu Zhizhen. Motion Error Analysis and Structural Optimization on Driving Mechanism of Half-rotating Wing based on Local Constraints[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(6): 978-984. doi: 10.13433/j.cnki.1003-8728.2017.0626
Citation: Wang Xiaoyi, Wang Huixing, Qiu han, Chen Fuqiang, Qiu Zhizhen. Motion Error Analysis and Structural Optimization on Driving Mechanism of Half-rotating Wing based on Local Constraints[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(6): 978-984. doi: 10.13433/j.cnki.1003-8728.2017.0626

采用局部约束的半转翼驱动机构运动误差分析及其结构参数优化

doi: 10.13433/j.cnki.1003-8728.2017.0626
基金项目: 

国家自然科学基金项目(51375014)资助

详细信息
    作者简介:

    王孝义(1970-),教授,博士,研究方向为仿生机械、数字化设计与制造,wangxy@ahut.edu.cn

Motion Error Analysis and Structural Optimization on Driving Mechanism of Half-rotating Wing based on Local Constraints

  • 摘要: 半转翼是一种以转动式拍动替代摆动式拍动的新型类扑翼系统,针对传统半转机构传动复杂、重量大不适合飞行的缺点,提出一种采用局部约束的简约化半转机构作为半转翼驱动机构。给出了局部约束的形成过程和作用特点,根据运动构件间的接触状态将局部约束作用过程分成4个阶段,分别建立了不同阶段下的驱动机构半转杆转角偏差理论分析模型。在以上模型基础上,对驱动机构关键构件的结构进行优化设计。实例验证了半转杆转角偏差理论模型具有较好的可靠性,优化结果降低了转角偏差从而提高了驱动机构运行的平稳性。以上研究结果表明局部约束及其在简约化半转机构中的应用可为半转翼驱动机构设计提供新途径、新方法。
  • [1] Wood R J. The first take off a biologically inspired at-scale robotic insect[J]. IEEE Transactions on Robotics, 2008,24(2):341-347
    [2] Chen W Y, Zhang W P. Micro bionic flapping-wing aircraft[M]. Shanghai: Shanghai Jiao Tong University Press, 2010 (in Chinese)
    [3] Hines L L, Arabagi V, Sitti M. Free flight simulations and pitch and roll control experiments of a sub-gram flapping-flight micro aerial vehicle[C]//Proceedings of 2011 IEEE International conference on Robotics and Automation, May 9-13, 2011, Shanghai, China. Shanghai: IEEE, 2011:1-7
    [4] Wei Z, Jia L C, Yang J M. Design, optimization and implementation of a parallel crank-rocker flapping mechanism[J]. Mechanics in Engineering, 2011,33(2):62-66 (in Chinese)
    [5] Xu Y C, Zong G H, Bi S S, et al. Design and analysis of a spatial crank-rocker flapping-wing mechanism[J]. Journal of Aerospace Power, 2009,24(1):204-208 (in Chinese)
    [6] Tan X B, Zhang W P, Ke X J, et al. Development of Flapping-wing Micro Air Vehicle in Asia[C]//World Congress on Intelligent Control and Automation (WCICA), July 6-8, 2012 Beijing, China. Beijing: IEEE, 2012:3939-3942
    [7] 陈文元,张卫平.微型扑翼式仿生飞行器[M].上海:上海交通大学出版社,2010
    [8] Qiu Z Z. Reversed thinking and outlet of animal-motion bionics[J]. Journal of Anhui University of Technology, 2004,22(2):104-107 (in Chinese)
    [9] Mueller J. Fixed and flapping wing aerodynamics for micro air vehicle applications[M]. Virginia: AIAA, 2001
    [10] Qiu H, Wang X Y. Half-rotating mechanism: a biomimetic mechanism of animal motion and its basic motion characteristics[J]. Mechanical Science and Technology for Aerospace Engineering, 2011,30(4):600-604 (in Chinese)
    [11] Wang X Y, Mei L L, Chen F Q, et al. Analysis and application of motion geometry feature for a new biped-imitating walking mechanism[J]. Mechanical Science and Technology for Aerospace Engineering, 2011,30(6):1020-1024 (in Chinese)
    [12] Pornsin-Sirirak T N, Lee S W, Nassef H, et al. MEMS wing technology for a battery-powered ornithopter[C]//The 13th IEEE Annual International Conference on MEMS, Jan 23-27, 2000, Miyazaki, Japan. Miyazaki, Japan: IEEE, 2000:799-804
    [13] Madangopal R, Khan Z A, Agrawal S K. Biologically inspired design of small flapping wing air vehicles using four-bar mechanisms and quasi-steady aerodynamics[J]. Journal of Mechanical Design, 2005,127(4):809
    [14] Wang X Y, Qin J H, Qiu H, et al. Walking stability control of a new biped-imitating walking mechanism based on ZMP[J]. Mechanical Science and Technology for Aerospace Engineering, 2014,33(6):802-806 (in Chinese)
    [15] YU X L, Luo H, Xia W. Mobile system of lunar rover based on half-rotating mechanism and its kinematics[J]. China Mechanical Engineering, 2008,19(24):2926-2929 (in Chinese)
    [16] 魏榛,贾立超,杨基明.一种平行曲柄连杆扑翼机构的设计、优化与实现[J].力学与实践,2011,33(2):62-66
    [17] Zhang Y H, Qiu Z Z. Propeller with a blade and its motion characteristics[J]. Chinese Journal of Mechanical Engineering, 2006,42(3):193-196 (in Chinese)
    [18] 徐一村,宗光华,毕树生,等.空间曲柄摇杆扑翼机构设计分析[J].航空动力学报,2009,24(1):204-208
    [19] 邱支振.动物运动仿生的反思与出路[J].安徽工业大学学报,2004,22(2):104-107
    [20] 邱晗,王孝义.半转机构——一种运动仿生机构的构成及其基本运动特性[J].机械科学与技术,2011,30(4):600-604
    [21] 王孝义,梅林林,陈富强,等.类两足步行机构及其运动几何特征分析与应用[J].机械科学与技术,2011,30(6):1020-1024
    [22] 王孝义,秦建恒,邱晗,等.基于ZMP的类双足步行机构行走稳定性控制[J].机械科学与术,2014,33(6):802-806
    [23] 余晓流,骆辉,夏伟.基于半转机构的月球车移动系统及运动学分析[J].中国机械工程,2008,19(24):2926-2929
    [24] 张玉华,邱支振.单叶片推进器及其运动特性[J].机械工程学报,2006,42(3):193-196
  • 加载中
计量
  • 文章访问数:  127
  • HTML全文浏览量:  16
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-12
  • 刊出日期:  2017-06-05

目录

    /

    返回文章
    返回