留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单液滴冲击多孔介质过程的数值模拟与试验

周攀 李淑娟 杨磊鹏

周攀, 李淑娟, 杨磊鹏. 单液滴冲击多孔介质过程的数值模拟与试验[J]. 机械科学与技术, 2017, 36(6): 965-970. doi: 10.13433/j.cnki.1003-8728.2017.0624
引用本文: 周攀, 李淑娟, 杨磊鹏. 单液滴冲击多孔介质过程的数值模拟与试验[J]. 机械科学与技术, 2017, 36(6): 965-970. doi: 10.13433/j.cnki.1003-8728.2017.0624
Zhou Pan, Li Shujuan, Yang Leipeng. Process Simulation and Experiments of Single Droplet Impactingon Porous Materials[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(6): 965-970. doi: 10.13433/j.cnki.1003-8728.2017.0624
Citation: Zhou Pan, Li Shujuan, Yang Leipeng. Process Simulation and Experiments of Single Droplet Impactingon Porous Materials[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(6): 965-970. doi: 10.13433/j.cnki.1003-8728.2017.0624

单液滴冲击多孔介质过程的数值模拟与试验

doi: 10.13433/j.cnki.1003-8728.2017.0624
基金项目: 

国家重点基础研究发展规划项目(2009CB724406)与陕西省重点实验室项目(13JS071)资助

详细信息
    作者简介:

    周攀(1990-),硕士研究生,研究方向为机械电子工程,1345526200@qq.com

    通讯作者:

    李淑娟(联系人),教授,博士生导师,shujuanli2009@gmail.com

Process Simulation and Experiments of Single Droplet Impactingon Porous Materials

  • 摘要: 三维打印过程中,粘结剂的性能及动态行为对打印过程的质量有重要影响。本文中分析了单液滴对多孔介质的冲击、扩展、渗透动态过程,建立了液滴动态变化的数学模型。为了准确描述液滴流动的动态效果,采用VOF(Volume of fluid)模型来跟踪液滴形状,采用PISO(Pressure implicit split operator)算法计算压力速度耦合。分析了液滴特性、冲击速度和多孔介质孔隙率对液滴扩展特性的影响。试验结果表明,提出的模型可以进行良好的预测,同时发现液滴最大扩展半径随液滴初始速度的增加而增加,随粘度的增加而减小;孔隙率越小,液滴在多孔介质外部的扩展明显,扩展半径变大,渗透厚度变小。
  • [1] Li X Y. The research and process optimization of forming mechanism 3DP technology[D]. Shanghai: Tongji University, 2006:26-27 (in Chinese)
    [2] 李晓燕.3DP成形技术的机理研究及过程优化[D].上海:同济大学,2006:26-27
    [3] Werner S R L, Jones J R, Paterson A H J, et al. Droplet impact and spreading: droplet formulation effects[J]. Chemical Engineering Science, 2007,62(9):2336-2345
    [4] Sui T, Jing L, Wang J D, et al. The spreading process of droplet impacting on flat solid surface[J]. Lubrication Engineering, 2011,36(7):9-13 (in Chinese)
    [5] Marston J O, Thoroddsen S T, Ng W K, et al. Experimental study of liquid drop impact onto a powder surface[J]. Powder Technology, 2010,203(2):223-236
    [6] Liu H, Wang S C, Xie M Z, et al. Process analysis of double droplets hitting wall vertically[J]. Journal of Jiangsu University (Natural Science Edition), 2012,33(3):274-277 (in Chinese)
    [7] Nefzaoui E, Skurtys O. Impact of a liquid drop on a granular medium: inertia, viscosity and surface tension effects on the drop deformation[J]. Experimental Thermal and Fluid Science, 2012,41:43-50
    [8] Song Y C, Wang C H, Ning Z. Computation of incompressible two-phase flows by using CLSVOF method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011,42(7):26-31,60 (in Chinese)
    [9] Marston J O, Sprittles J E, Zhu Y, et al. Drop spreading and penetration into pre-wetted powders[J]. Powder Technology, 2013,239:128-136
    [10] Kim W S, Lee S Y. Behavior of a water drop impinging on heated porous surfaces[J]. Experimental Thermal and Fluid Science, 2014,55:62-70
    [11] Harlow F H, Shannon J P. The splash of a liquid drop[J]. Journal of Applied Physics, 1967,38(10):3855-3866
    [12] Tsurutani K, Yao M, Senda J, et al. Numerical analysis of the deformation process of a droplet impinging upon a wall[J]. JSME International Journal, 1990,33(3):555-561
    [13] Kim E, Baek J. Numerical study of the parameters governing the impact dynamics of yield-stress fluid droplets on a solid surface[J]. Journal of Non-Newtonian Fluid Mechanics, 2012,173-174:62-71
    [14] Hung Y L, Wang M J, Liao Y C, et al. Initial wetting velocity of droplet impact and spreading: water on glass and parafilm[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011,384(1-3):172-179
    [15] Markicevic B, Li H, Sikorski Y, et al. Infiltration time and imprint shape of a sessile droplet imbibing porous medium[J]. Journal of Colloid and Interface Science, 2009,336(2):698-706
    [16] Jazia D B, Vonna L, Knopf S, et al. Absorption of water/ethanol microdroplets into model porous networks[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013,436:363-370
    [17] 隋涛,蒋亮,汪家道,等.液滴碰撞固体壁面的铺展特征研究[J].润滑与密封,2011,36(7):9-13
    [18] 刘红,王淑春,解茂昭,等.双液滴垂直碰撞等温壁面过程分析[J].江苏大学学报(自然科学版),2012,33(3):274-277
    [19] 宋云超,王春海,宁智.追踪不可压缩两相流相界面的CLSVOF方法[J].农业机械学报,2011,42(7):26-31,60
  • 加载中
计量
  • 文章访问数:  177
  • HTML全文浏览量:  20
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-03
  • 刊出日期:  2017-06-05

目录

    /

    返回文章
    返回