留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随机-认知混合不确定性下稳健性评价新指标

锁斌 郭惠昕

锁斌, 郭惠昕. 随机-认知混合不确定性下稳健性评价新指标[J]. 机械科学与技术, 2017, 36(6): 855-862. doi: 10.13433/j.cnki.1003-8728.2017.0606
引用本文: 锁斌, 郭惠昕. 随机-认知混合不确定性下稳健性评价新指标[J]. 机械科学与技术, 2017, 36(6): 855-862. doi: 10.13433/j.cnki.1003-8728.2017.0606
Suo Bin, Guo Huixin. Establishing New and Robust Evaluation Indexes under Aleatory and Epistemic Uncertainties[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(6): 855-862. doi: 10.13433/j.cnki.1003-8728.2017.0606
Citation: Suo Bin, Guo Huixin. Establishing New and Robust Evaluation Indexes under Aleatory and Epistemic Uncertainties[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(6): 855-862. doi: 10.13433/j.cnki.1003-8728.2017.0606

随机-认知混合不确定性下稳健性评价新指标

doi: 10.13433/j.cnki.1003-8728.2017.0606
基金项目: 

中国人民解放军总装备部技术基础项目(2015zk1.2)与中国工程物理研究院科学技术发展基金项目(2014B0403063)资助

详细信息
    作者简介:

    锁斌(1979-),副研究员,博士,研究方向为系统可靠性分析与评估、不确定性信息处理等,suo.y.y@163.com

Establishing New and Robust Evaluation Indexes under Aleatory and Epistemic Uncertainties

  • 摘要: 在随机不确定性和认知不确定性信息混合并存的产品稳健设计中,现有的基于概率理论、模糊集理论、区间理论等建立的质量稳健性度量指标适用性受到限制。针对此问题,将各类不确定性在证据理论的统一框架下表征和处理,构建了产品质量指标的证据理论模型和不确定性量化传递方法,从随机不确定性和认知不确定性两个维度提出了产品质量稳健性的评价指标和评价方法。实例仿真表明,该方法可克服现有方法的不足,对产品质量稳健性的评价更加全面、合理。
  • [1] Taguchi G. Introduction to quality engineering: designing quality into products and processes[M]. Tokyo: Asian Productivity Organization, 1986
    [2] Wilde D J. Monotonicity analysis of Taguchi's robust circuit design problem[J]. Journal of Mechanical Design, 1992,114(4):616-619
    [3] Otto K N, Antonsson E K. Extensions to the Taguchi method of product design[J]. Journal of Mechanical Design, 1993,115(1):5-13
    [4] Tong L I, Su C T. Optimizing multi-response problems in the Taguchi method by fuzzy multiple attribute decision making[J]. Quality and Reliability Engineering International, 1997,13(1):25-34
    [5] 许焕卫,孙伟,张旭.基于混合响应面的多目标稳健设 计[J].机械科学与技术,2008,27(5):628-632 Xu H W, Sun W, Zhang X. A hybrid response surface method for robust design[J]. Mechanical Science and Technology for Aerospace Engineering, 2008,27(5):628-632 (in Chinese)
    [6] Dong Z, Hu W, Xue D. New production cost-tolerance models for tolerance synthesis[J]. Journal of Engineering for Industry, 1994,116(2):199-206
    [7] Bates R A, Wynn M P. Tolerancing and optimization for model-based robust engineering design[J]. Quality and Reliability Engineering International, 1996,12(2):119-127
    [8] Kusiak A, Feng C X. Robust tolerance design for quality[J]. Journal of Engineering for Industry, 1996,118(1):166-169
    [9] Parkinson A. Robust mechanical design using engineering models[J]. Journal of Mechanical Design, 1995,117(B):48-54
    [10] Doltsinis I, Kang Z. Robust design of structures using optimization methods[J]. Computer Methods in Applied Mechanics and Engineering, 2004,193(23-26):2221-2237
    [11] Shindin E, Boni O, Masin M. Robust optimization of system design[J]. Procedia Computer Science, 2014,28:489-496
    [12] Oberkampf W L, Helton J C, Sentz K. Mathematical representation of uncertainty[C]//Proceedings of the 19th AIAA Applied Aerodynamics Conference, 2001, Anaheim, CA, USA. Anaheim, CA, USA: AIAA, 2001
    [13] Box G. Signal-to-noise ratios, performance criteria, and transformations[J]. Technometrics, 1988,30(1):1-17
    [14] 李泳鲜,孟庆国,李自贵.基于三次设计和模糊理论的圆柱螺旋弹簧稳健设计[J].机械强度,2001,23(2):198-201,215 Li Y X, Meng Q G, Li Z G. Robust design based on three stage design and fuzzy theory for helical springs[J]. Journal of Mechanical Strength, 2001,23(2):198-201,215 (in Chinese)
    [15] 刘春涛,林志航.基于分位数型设计准则的模糊健壮设计新方法[J].机械工程学报,2005,41(7):24-29 Liu C T, Lin Z H. New method for fuzzy robust design based on percentile formulation design rules[J]. Chinese Journal of Mechanical Engineering, 2005,41(7):24-29 (in Chinese)
    [16] 刘春涛,林志航,周春景.具有随机型和区间型干扰因素的产品健壮设计研究[J].中国机械工程,2007,18(5):505-509 Liu C T, Lin Z H, Zhou J C. Study on product robust design with a mixture of random and interval noise factors[J]. China Mechanical Engineering, 2007,18(5):505-509 (in Chinese)
    [17] 刘德顺,岳文辉,朱萍玉,等.基于性能稳健偏差的区间型参数稳健设计优化[J].中国机械工程,2007,18(8):952-957 Liu D S, Yue W H, Zhu P Y, et al. Robust design optimization involving interval parameters based on robust performance variations[J]. China Mechanical Engineering, 2007,18(8):952-957 (in Chinese)
    [18] 李亚平,刘思峰,方志耕.基于质量特性与参数隐式函数关系的DEA混合稳健设计模型[J].中国机械工程,2012,23(9):1079-1083 Li Y P, Liu S F, Fang Z G. A hybrid robust design model by DEA for implicit function of quality characteristics and its parameters[J]. China Mechanical Engineering, 2012,23(9):1079-1083 (in Chinese)
    [19] 程贤福.公理设计与稳健设计的统一关系研究[J].机械强度,2010,32(2):243-249 Cheng X F. Research on the relation between axiomatic design and robust design[J]. Journal of Mechanical Strength, 2010,32(2):243-249 (in Chinese)
    [20] Cheng Y S, Au F T K, Tham L G, et al. Optimal and robust design of docking blocks with uncertainty[J]. Engineering Structures, 2004,26(4):499-510
    [21] 周峰,张学良,贾庭芳,等.6σ稳健设计在单目标优化问题中的仿真应用[J].太原科技大学学报,2011,32(4):300-304 Zhou F, Zhang X L, Jia T F, et al. Simulation and application of 6σ robust design in single-objective optimal problems[J]. Journal of Taiyuan University of Science and Technology, 2011,32(4):300-304 (in Chinese)
    [22] 张义民,贺向东,刘巧伶,等.任意分布参数的机械零件的可靠性稳健设计(一):理论部分[J].工程设计学报,2004,11(5):233-237 Zhang Y M, He X D, Liu Q L, et al. Reliability-based robust design of mechanical components with arbitrary distribution parameters, part 1: theory[J]. Journal of Engineering Design, 2004,11(5):233-237 (in Chinese)
    [23] Limbourg P, de Rocquigny E. Uncertainty analysis using evidence theory-confronting level-1 and level-2 approaches with data availability and computational constraints[J]. Reliability Engineering & System Safety, 2010,95(5):550-564
    [24] Zhang X D, Huang H Z. Sequential optimization and reliability assessment for multidisciplinary design optimization under aleatory and epistemic uncertainties[J]. Structural and Multidisciplinary Optimization, 2010,40(1-6):165-175
    [25] Dempster A P. Upper and lower probabilities induced by a multivalued mapping[J]. The Annals of Mathematical Statistics, 1967,38(2):325-339
    [26] Shafer G. A mathematical theory of evidence[M]. Princeton: Princeton University Press, 1976
    [27] Joslyn C, Helton J C. Bounds on belief and plausibility of functionally propagated random sets[C]//Proceedings of 2002 Annual Meetings of the North American Fuzzy Information Processing Society, June 27-29, 2002, New Orleans, LA. New Orleans, LA: IEEE, 2002: 27-29
    [28] Tonon F. Using random set theory to propagate epistemic uncertainty through a mechanical system[J]. Reliability Engineering & System Safety, 2004,85(1-3):169-181
    [29] Zuiani F, Vasile M, Gibbings A. Evidence-based robust design of deflection actions for near earth objects[J]. Celestial Mechanics and Dynamical Astronomy, 2012,114(1-2):107-136
    [30] 锁斌,程永生,曾超,等.基于证据理论的异类信息统一表示与建模[J].系统仿真学报,2013,25(1):6-11 Suo B, Cheng Y S, Zeng C, et al. Unified method of describing and modeling heterogeneous information based on evidence theory[J]. Journal of System Simulation, 2013,25(1):6-11 (in Chinese)
    [31] Dong W M, Shah H C. Vertex method for computing functions of fuzzy variables[J]. Fuzzy Sets and Systems, 1987,24(1):65-78
    [32] Helton J C, Johnson J D, Oberkampf W L, et al. A sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory[J]. Computer Methods in Applied Mechanics and Engineering, 2007,196(37-40):3980-3998
    [33] Suo B, Cheng Y S, Zeng C, et al. Computational intelligence approach for uncertainty quantification using evidence theory[J]. Journal of Systems Engineering and Electronics, 2013,24(2):250-260
    [34] 胡钧铭.一种面向随机与认知不确定性的稳健优化设计方法研究[D].四川绵阳:中国工程物理研究院,2012 Hu J M. A methodology research on robust design optimization considering aleatory and epistemic uncertainty[D]. Sichuan Mianyang: China Academy of Engineering Physics, 2012 (in Chinese)
  • 加载中
计量
  • 文章访问数:  208
  • HTML全文浏览量:  39
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-04
  • 刊出日期:  2017-06-05

目录

    /

    返回文章
    返回