留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁瓦表面图像的下包络线灰度对比度缺陷检测算法

刘国平 常震 胡瑢华

刘国平, 常震, 胡瑢华. 磁瓦表面图像的下包络线灰度对比度缺陷检测算法[J]. 机械科学与技术, 2017, 36(2): 269-272. doi: 10.13433/j.cnki.1003-8728.2017.0218
引用本文: 刘国平, 常震, 胡瑢华. 磁瓦表面图像的下包络线灰度对比度缺陷检测算法[J]. 机械科学与技术, 2017, 36(2): 269-272. doi: 10.13433/j.cnki.1003-8728.2017.0218
Liu Guoping, Chang Zhen, Hu Ronghua. Defect Extraction on Magnetic Tile Surfaces based on Lower Envelope Gray-scale Contrast[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(2): 269-272. doi: 10.13433/j.cnki.1003-8728.2017.0218
Citation: Liu Guoping, Chang Zhen, Hu Ronghua. Defect Extraction on Magnetic Tile Surfaces based on Lower Envelope Gray-scale Contrast[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(2): 269-272. doi: 10.13433/j.cnki.1003-8728.2017.0218

磁瓦表面图像的下包络线灰度对比度缺陷检测算法

doi: 10.13433/j.cnki.1003-8728.2017.0218
详细信息
    作者简介:

    刘国平(1964-),教授,博士,研究方向为智能机器人与视觉、机器人技术与智能自动化,liuguoping.ncu@163.com

Defect Extraction on Magnetic Tile Surfaces based on Lower Envelope Gray-scale Contrast

  • 摘要: 为解决磁瓦表面缺陷对比度低、整体亮度不均匀以及磁瓦图像中存在大量的冲击噪声干扰等难题,提出了一种基于下包络线灰度对比度的缺陷检测算法。首先定义扫描线灰度对比度,用下包络的方式来优化每一行扫描灰度曲线,然后计算下包络线上的最大灰度对比度并判断该点是否为缺陷区域中的点从而得到缺陷区域的“骨架”,最后通过8邻接方式对“骨架”进行扩展得到完整的缺陷区域。实验证明,该方法能够有效解决冲击噪声对图像分割的影响,克服光照不均、表面存在磨削条纹等干扰,对不同类型缺陷有较好的分割效果。
  • [1] Turaga P, Chellappa R, Subrahmanian V S, et al. Machine recognition of human activities:a survey[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008,18(11):1473-1488
    [2] Kumar A. Computer-vision-based fabric defect detection:a survey[J]. IEEE Transactions on Industrial Electronics, 2008,55(1):348-363
    [3] Keser T, Hocenski Ž, Hocenski V. Intelligent machine vision system for automated quality control in ceramic tiles industry[J]. Strojarstvo:časopis za teoriju i praksu u strojarstvu, 2010,52(2):105-114
    [4] 王岩松,金伟其,钟克洪.随机纹理表面缺陷检测方法与应用[J].中国图象图形学报,2009,14(1):131-135 Wang Y S, Jin W Q, Zhong K H. Defect inspection method for random texture surface and its applications[J]. Journal of Image and Graphics, 2009,14(1):131-135 (in Chinese)
    [5] 朱海荣,姜平,杨奕,等.改进的精密机械加工零件表面缺陷检测算法[J].传感器与微系统,2006,25(11):66-69 Zhu H R, Jiang P, Yang Y, et al. Improved defects detection algorithm for machined part surface[J]. Transducer and Microsystem Technologies, 2006,25(11):66-69 (in Chinese)
    [6] 张振尧,白瑞林,过志强,等.磁瓦表面缺陷的机器视觉检测方法[J].光学技术,2014,40(5):434-439 Zhang Z Y, Bai R L, Guo Z Q, et al. The feature selection and bias classification of magnetic tile surface defect[J]. Optical Technique, 2014,40(5):434-439 (in Chinese)
    [7] 杜柳青,余永维.磁瓦表面缺陷机器视觉检测与识别方法[J].图学学报,2014,35(4):590-594 Du L Q, Yu Y W. Machine vision inspection of surface defect for arc magnet[J]. Journal of Graphics, 2014,35(4):590-594 (in Chinese)
    [8] 余永维,殷国富,蒋红海,等.磁瓦表面图像的自适应形态学滤波缺陷提取方法[J].计算机辅助设计与图形学学报,2012,24(3):351-356 Yu Y W, Yin G F, Jiang H H, et al. Defect extraction method of arc magnet surface images based on adaptive morphological filtering[J]. Journal of Computer-Aided Design & Computer Graphics, 2012,24(3):351-356 (in Chinese)
    [9] Li X Q, Jiang H H, Yin G F. Detection of surface crack defects on ferrite magnetic tile[J]. NDT & E International, 2014,62:6-13
    [10] 郑晓曦,严俊龙.数学形态学在磁瓦表面缺陷检测中的运用[J].计算机工程与应用,2008,44(16):182-184 Zheng X X, Yan J L. Application of mathematical morphology to dectect surface disfigurement of arc segments ceramic magnet[J]. Computer Engineering and Applications, 2008,44(16):182-184 (in Chinese)
    [11] Lazaros N, Sirakoulis G C, Gasteratos A. Review of stereo vision algorithms:from software to hardware[J]. International Journal of Optomechatronics, 2008,2(4):435-462
    [12] Jayas D S, Paliwal J, Visen N S. Review paper (AE-Automation and Emerging Technologies):multi-layer neural networks for image analysis of agricultural products[J]. Journal of Agricultural Engineering Research, 2000,77(2):119-128
    [13] Gonzalez R C, Woods R E. Digital image processing[M]. 3rd ed. Beijing:Publishing House of Electronics Industry, 2011:428-435
    [14] Shen J H. On the foundations of vision modeling:I. Weber's law and weberized TV restoration[J]. Physica D:Nonlinear Phenomena, 2003;175(3-4):241-251
    [15] 吴佳茜,余隋怀,杨刚俊,等.人对结构比例的视觉感知差异阈研究[J].机械科学与技术,2011,30(5):765-769 Wu J X, Yu S H, Yang G J, et al. Difference threshold of proportion perception of a human being on configuration[J]. Mechanical Science and Technology for Aerospace Engineering, 2011,30(5):765-769 (in Chinese)
  • 加载中
计量
  • 文章访问数:  132
  • HTML全文浏览量:  22
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-13
  • 刊出日期:  2017-02-05

目录

    /

    返回文章
    返回