留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直微通道中的电黏性效应

罗艳 李鸣 杨大勇

罗艳, 李鸣, 杨大勇. 直微通道中的电黏性效应[J]. 机械科学与技术, 2017, 36(2): 245-249. doi: 10.13433/j.cnki.1003-8728.2017.0214
引用本文: 罗艳, 李鸣, 杨大勇. 直微通道中的电黏性效应[J]. 机械科学与技术, 2017, 36(2): 245-249. doi: 10.13433/j.cnki.1003-8728.2017.0214
Luo Yan, Li Ming, Yang Dayong. Electroviscous Effects of Power-law Fluids in Microchannels[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(2): 245-249. doi: 10.13433/j.cnki.1003-8728.2017.0214
Citation: Luo Yan, Li Ming, Yang Dayong. Electroviscous Effects of Power-law Fluids in Microchannels[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(2): 245-249. doi: 10.13433/j.cnki.1003-8728.2017.0214

直微通道中的电黏性效应

doi: 10.13433/j.cnki.1003-8728.2017.0214
基金项目: 

国家自然科学基金项目(11302095)资助

详细信息
    作者简介:

    罗艳(1990-),硕士研究生,研究方向为机械动力学和计算流体力学,13576997924@163.com

    通讯作者:

    李鸣(联系人),教授,博士,Liming@ncu.edu.cn

Electroviscous Effects of Power-law Fluids in Microchannels

  • 摘要: 为了研究直微通道中幂律流体的电黏性效应,建立了压力驱动微通道内流体流动的数学模型,其中双电层电势分布、流体流动及流动粒子输运特性分别由Poisson-Boltzmann(P-B)方程、Navier-Stokes(N-S)方程及Nernst-Plank(N-P)方程描述。讨论了微通道中有电黏性效应时溶液浓度;幂律指数对微通道内流体的速度分布、流动电场强度的影响。结果表明:对于nn的增大而减小,变化非常明显;而对于n>1的剪切变稠流体,黏度和流动速度几乎不受n的影响,在实际应用中可以忽略不计。
  • [1] Squires T M, Quake S R. Microfluidics:fluid physics at the nanoliter scale[J]. Reviews of Modern Physics, 2005,77(3):977-1026
    [2] Cheng S B, Skinner C D, Taylor J, et al. Development of a multichannel microfluidic analysis system employing affinity capillary electrophoresis for immunoassay[J]. Analytical Chemistry, 2001,73(7):1472-1479
    [3] Buchholz B A, Doherty E A S, Albarghouthi M N, et al. Microchannel DNA sequencing matrices with a thermally controlled "viscosity switch"[J]. Analytical Chemistry, 2001,73(2):157-164
    [4] Choban E R, Markoski L J, Wieckowski A, et al. Microfluidic fuel cell based on laminar flow[J]. Journal of Power Sources, 2004,128(1):54-60
    [5] 谭德坤,刘莹.双电层效应对压力驱动微流体流动及传热的影响[J].机械工程学报,2012,48(18):144-151 Tan D K, Liu Y. Electrical double layer effect on pressure-driven liquid flow and heat transfer in microchannels[J]. Journal of Mechanical Engineering, 2012,48(18):144-151 (in Chinese)
    [6] 李战华,吴健康,胡国庆,等.微流控芯片中的流体流动[M].北京:科学出版社,2012 Li Z H, Wu J K, Hu G Q, et al. Fluid flow in microfluidic Chips[M]. Beijing:Science Press, 2012 (in Chinese)
    [7] Lyklema J. Fundamentals of interface and colloid science:soft colloids[M]. London:Academic Press, 2005
    [8] Hunter R J. Zeta potential in colloid science:principles and applications[M]. London:Academic Press, 2013
    [9] Ren L Q, Li D Q, Qu W L. Electro-viscous effects on liquid flow in microchannels[J]. Journal of Colloid and Interface Science, 2001,233(1):12-22
    [10] Yang C, Li D Q. Analysis of electrokinetic effects on the liquid flow in rectangular microchannels[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1998,143(2-3):339-353
    [11] Davidson M R, Harvie D J E. Electroviscous effects in low Reynolds number liquid flow through a slit-like microfluidic contraction[J]. Chemical Engineering Science, 2007,62(16):4229-4240
    [12] Berry J D, Foong A E, Lade C E, et al. Electroviscous resistance of nanofluidic bends[J]. Physical Review E, 2014,90(4):043008
    [13] Vasu N, De S. Electroviscous effects in purely pressure driven flow and stationary plane analysis in electroosmotic flow of power-law fluids in a slit microchannel[J]. International Journal of Engineering Science, 2010,48(11):1641-1658
    [14] Wang M R, Chang C C, Yang R J. Electroviscous effects in nanofluidic channels[J]. The Journal of Chemical Physics, 2010,132(2):024701
    [15] Ren C L, Li D Q. Electroviscous effects on pressure-driven flow of dilute electrolyte solutions in small microchannels[J]. Journal of Colloid and Interface Science, 2004,274(1):319-330
    [16] Chhabra R P, Richardson J F. Non-Newtonian flow in the process industries:fundamentals and engineering applications[M]. Oxford, Boston, MA:Butterworth-Heinemann, 1999
    [17] Wang J K, Wang M R, Li Z X. Lattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels[J]. Journal of Colloid and Interface Science, 2006,296(2):729-736
    [18] 龚磊,吴健康.微通道液体流动双电层阻力效应[J].应用数学和力学,2006,27(10):1219-1225 Gong L, Wu J K. Resistance effect of electric double layer on liquid flow in microchannel[J]. Applied Mathematics and Mechanics, 2006,27(10):1219-1225 (in Chinese)
    [19] Tang G H, Ye P X, Tao W Q. Electroviscous effect on non-Newtonian fluid flow in microchannels[J]. Journal of Non-Newtonian Fluid Mechanics, 2010,165(7-8):435-440
  • 加载中
计量
  • 文章访问数:  214
  • HTML全文浏览量:  48
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-29
  • 刊出日期:  2017-02-05

目录

    /

    返回文章
    返回