[1]
|
Squires T M, Quake S R. Microfluidics:fluid physics at the nanoliter scale[J]. Reviews of Modern Physics, 2005,77(3):977-1026
|
[2]
|
Cheng S B, Skinner C D, Taylor J, et al. Development of a multichannel microfluidic analysis system employing affinity capillary electrophoresis for immunoassay[J]. Analytical Chemistry, 2001,73(7):1472-1479
|
[3]
|
Buchholz B A, Doherty E A S, Albarghouthi M N, et al. Microchannel DNA sequencing matrices with a thermally controlled "viscosity switch"[J]. Analytical Chemistry, 2001,73(2):157-164
|
[4]
|
Choban E R, Markoski L J, Wieckowski A, et al. Microfluidic fuel cell based on laminar flow[J]. Journal of Power Sources, 2004,128(1):54-60
|
[5]
|
谭德坤,刘莹.双电层效应对压力驱动微流体流动及传热的影响[J].机械工程学报,2012,48(18):144-151 Tan D K, Liu Y. Electrical double layer effect on pressure-driven liquid flow and heat transfer in microchannels[J]. Journal of Mechanical Engineering, 2012,48(18):144-151 (in Chinese)
|
[6]
|
李战华,吴健康,胡国庆,等.微流控芯片中的流体流动[M].北京:科学出版社,2012 Li Z H, Wu J K, Hu G Q, et al. Fluid flow in microfluidic Chips[M]. Beijing:Science Press, 2012 (in Chinese)
|
[7]
|
Lyklema J. Fundamentals of interface and colloid science:soft colloids[M]. London:Academic Press, 2005
|
[8]
|
Hunter R J. Zeta potential in colloid science:principles and applications[M]. London:Academic Press, 2013
|
[9]
|
Ren L Q, Li D Q, Qu W L. Electro-viscous effects on liquid flow in microchannels[J]. Journal of Colloid and Interface Science, 2001,233(1):12-22
|
[10]
|
Yang C, Li D Q. Analysis of electrokinetic effects on the liquid flow in rectangular microchannels[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1998,143(2-3):339-353
|
[11]
|
Davidson M R, Harvie D J E. Electroviscous effects in low Reynolds number liquid flow through a slit-like microfluidic contraction[J]. Chemical Engineering Science, 2007,62(16):4229-4240
|
[12]
|
Berry J D, Foong A E, Lade C E, et al. Electroviscous resistance of nanofluidic bends[J]. Physical Review E, 2014,90(4):043008
|
[13]
|
Vasu N, De S. Electroviscous effects in purely pressure driven flow and stationary plane analysis in electroosmotic flow of power-law fluids in a slit microchannel[J]. International Journal of Engineering Science, 2010,48(11):1641-1658
|
[14]
|
Wang M R, Chang C C, Yang R J. Electroviscous effects in nanofluidic channels[J]. The Journal of Chemical Physics, 2010,132(2):024701
|
[15]
|
Ren C L, Li D Q. Electroviscous effects on pressure-driven flow of dilute electrolyte solutions in small microchannels[J]. Journal of Colloid and Interface Science, 2004,274(1):319-330
|
[16]
|
Chhabra R P, Richardson J F. Non-Newtonian flow in the process industries:fundamentals and engineering applications[M]. Oxford, Boston, MA:Butterworth-Heinemann, 1999
|
[17]
|
Wang J K, Wang M R, Li Z X. Lattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels[J]. Journal of Colloid and Interface Science, 2006,296(2):729-736
|
[18]
|
龚磊,吴健康.微通道液体流动双电层阻力效应[J].应用数学和力学,2006,27(10):1219-1225 Gong L, Wu J K. Resistance effect of electric double layer on liquid flow in microchannel[J]. Applied Mathematics and Mechanics, 2006,27(10):1219-1225 (in Chinese)
|
[19]
|
Tang G H, Ye P X, Tao W Q. Electroviscous effect on non-Newtonian fluid flow in microchannels[J]. Journal of Non-Newtonian Fluid Mechanics, 2010,165(7-8):435-440
|