留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3-UPS/PU并联机构动力学建模及自适应滑模控制

张达 原大宁 刘宏昭

张达, 原大宁, 刘宏昭. 3-UPS/PU并联机构动力学建模及自适应滑模控制[J]. 机械科学与技术, 2017, 36(2): 232-238. doi: 10.13433/j.cnki.1003-8728.2017.0212
引用本文: 张达, 原大宁, 刘宏昭. 3-UPS/PU并联机构动力学建模及自适应滑模控制[J]. 机械科学与技术, 2017, 36(2): 232-238. doi: 10.13433/j.cnki.1003-8728.2017.0212
Zhang Da, Yuan Daning, Liu Hongzhao. Dynamic Modeling and Adaptive Sliding Mode Control of 3-UPS/PU Parallel Mechanism[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(2): 232-238. doi: 10.13433/j.cnki.1003-8728.2017.0212
Citation: Zhang Da, Yuan Daning, Liu Hongzhao. Dynamic Modeling and Adaptive Sliding Mode Control of 3-UPS/PU Parallel Mechanism[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(2): 232-238. doi: 10.13433/j.cnki.1003-8728.2017.0212

3-UPS/PU并联机构动力学建模及自适应滑模控制

doi: 10.13433/j.cnki.1003-8728.2017.0212
基金项目: 

国家自然科学基金项目(51275404)与陕西高校省级重点实验室科研项目(2010JS080)资助

详细信息
    作者简介:

    张达(1989-),硕士研究生,研究方向为并联机构动力学建模及控制,13720580471@163.com

    通讯作者:

    原大宁(联系人),教授,daningyuan@163.com

Dynamic Modeling and Adaptive Sliding Mode Control of 3-UPS/PU Parallel Mechanism

  • 摘要: 为减少动力学模型不确定性(包括参数不确定和未知的负载干扰)对3-UPS/PU并联机构控制精度的影响,提出一种自适应滑模控制。首先在运动学反解基础上采用虚功原理建立该机构关于动平台工作空间的动力学模型。控制器结合了动力学名义模型和滑模控制理论,利用滑模面设计的自适应律可以对不确定性进行在线估计并补偿,从而提高系统鲁棒性。通过Lyapunov函数分析了系统稳定性。该控制器优点是:无需依赖不确定性上界,结构简单,易于工程应用,适用于并联机构这类复杂不确定系统。仿真结果显示,所采取的控制器能有效克服时变的模型不确定性,使动平台各自由度的平均跟踪误差相比传统滑模控制明显减少。
  • [1] 洪振宇,张志旭,许致华.3-UPS/PU型飞行模拟器驱动平台基于模拟性能的尺度综合方法[J].机械科学与技术,2014,33(9):1439-1444 Hong Z Y, Zhang Z X, Xu Z H. Dimensional synthesis of 3-UPS/PU driving platform of flight simulator based on simulation performance[J]. Mechanical Science and Technology for Aerospace Engineering, 2014,33(9):1439-1444 (in Chinese)
    [2] Sokolov A, Xirouchakis P. Dynamics analysis of a 3-DOF parallel manipulator with R-P-S joint structure[J]. Mechanism and Machine Theory, 2007,42(5):541-557
    [3] 陈修龙,冯伟明,赵永生.五自由度并联机器人机构动力学模型[J].农业机械学报,2013,44(1):236-243 Chen X L, Feng W M, Zhao Y S. Dynamics model of 5-DOF parallel robot mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013,44(1):236-243 (in Chinese)
    [4] Abdellatif H, Heimann B. Computational efficient inverse dynamics of 6-DOF fully parallel manipulators by using the Lagrangian formalism[J]. Mechanism and Machine Theory, 2009,44(1):192-207
    [5] Li J F, Wang J S. Inverse kinematic and dynamic analysis of a 3-DOF parallel mechanism[J]. Chinese Journal of Mechanical Engineering, 2003,16(1):54-58
    [6] Li Y M, Xu Q S. Dynamic modeling and robust control of a 3-PRC translational parallel kinematic machine[J]. Robotics and Computer-Integrated Manufacturing, 2009,25(3):630-640
    [7] Wu D S, Gu H B. Adaptive sliding control of Six-DOF flight simulator motion platform[J]. Chinese Journal of Aeronautics, 2007,20(5):425-433
    [8] Cazalilla J, Vallés M, Mata V, et al. Adaptive control of a 3-DOF parallel manipulator considering payload handling and relevant parameter models[J]. Robotics and Computer-Integrated Manufacturing, 2014,30(5):468-477
    [9] 宋斌,马广富,李传江.基于自适应滑模方法的航天器位置与姿态控制[J].哈尔滨工业大学学报,2008,40(9):1353-1357,1362 Song B, Ma G F, Li C J. Position and attitude control of a spacecraft based on adaptive sliding mode approach[J]. Journal of Harbin Institute of Technology, 2008,40(9):1353-1357,1362 (in Chinese)
    [10] Cong B L, Chen Z, Liu X D. On adaptive sliding mode control without switching gain overestimation[J]. International Journal of Robust and Nonlinear Control, 2014,24(3):515-531
    [11] 张鑫,刘凤娟,闫茂德.基于动力学模型的轮式移动机器人自适应滑模轨迹跟踪控制[J].机械科学与技术,2012,31(1):107-112 Zhang X, Liu F J, Yan M D. Dynamic model-based adaptive sliding-mode trajectory tracking control over wheeled mobile robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2012,31(1):107-112 (in Chinese)
    [12] Zeinali M, Notash L. Adaptive sliding mode control with uncertainty estimator for robot manipulators[J]. Mechanism and Machine Theory, 2010,45(1):80-90
    [13] Sencer B, Shamoto E. Effective torque ripple compensation in feed drive systems based on the adaptive sliding-mode controller[J]. IEEE/ASME Transactions on Mechatronics, 2014,19(6):1764-1772
    [14] Hu Q L, Zhang Y M, Huo X, et al. Adaptive integral-type sliding mode control for spacecraft attitude maneuvering under actuator stuck failures[J]. Chinese Journal of Aeronautics, 2011,24(1):32-45
    [15] Meng Q, Zhang T, Gao X, et al. Adaptive sliding mode fault-tolerant control of the uncertain stewart platform based on offline multibody dynamics[J]. IEEE/ASME Transactions on Mechatronics, 2014,19(3):882-894
    [16] Niu X M, Gao G Q, Liu X J, et al. Dynamics and control of a novel 3-DOF parallel manipulator with actuation redundancy[J]. International Journal of Automation and Computing, 2013,10(6):552-562
    [17] 李仁军,刘宏昭,李鹏飞.考虑摩擦和参数不确定的平面五杆机构控制[J].农业机械学报,2009,40(4):198-201 Li R J, Liu H Z, Li P F. Nonlinear friction compensation of planar 5-bar parallel mechanism with time variable parameters using sliding mode control[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009,40(4):198-201 (in Chinese)
  • 加载中
计量
  • 文章访问数:  272
  • HTML全文浏览量:  47
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-26
  • 刊出日期:  2017-02-05

目录

    /

    返回文章
    返回