留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

灰色理论在慢走丝线切割加工中的应用

肖帮东 张国军 徐中 黄浩 陈志

肖帮东, 张国军, 徐中, 黄浩, 陈志. 灰色理论在慢走丝线切割加工中的应用[J]. 机械科学与技术, 2017, 36(1): 58-67. doi: 10.13433/j.cnki.1003-8728.2017.0109
引用本文: 肖帮东, 张国军, 徐中, 黄浩, 陈志. 灰色理论在慢走丝线切割加工中的应用[J]. 机械科学与技术, 2017, 36(1): 58-67. doi: 10.13433/j.cnki.1003-8728.2017.0109
Xiao Bangdong, Zhang Guojun, Xu Zhong, Huang Hao, Chen Zhi. Application of Grey Theory in LS-WEDM[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(1): 58-67. doi: 10.13433/j.cnki.1003-8728.2017.0109
Citation: Xiao Bangdong, Zhang Guojun, Xu Zhong, Huang Hao, Chen Zhi. Application of Grey Theory in LS-WEDM[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(1): 58-67. doi: 10.13433/j.cnki.1003-8728.2017.0109

灰色理论在慢走丝线切割加工中的应用

doi: 10.13433/j.cnki.1003-8728.2017.0109
基金项目: 

国家自然科学基金项目(51175207)资助

详细信息
    作者简介:

    肖帮东(1991-),硕士研究生,研究方向为机电一体化、电火花线切割,15994249331@163.com

    通讯作者:

    张国军(联系人),教授,博士,zgj@mail.hust.edu.cn

Application of Grey Theory in LS-WEDM

  • 摘要: 慢走丝电火花线切割中工艺指标与工艺参数之间具有高度非线性关系,难以实现电火花多工艺参数优化,针对此问题,以电火花线切割SKD11模具钢为试验对象,选用水压、脉冲宽度、脉冲间隔、峰值电流和进给速度为可变因素,表面粗糙度(Ra)和材料去除率(MRR)为工艺指标,设计田口试验,采用灰色关联分析方法研究加工参数对工艺指标的影响关系;建立改进的灰色神经网络模型对Ra和MRR预测,其平均相对误差分别为7.92%和8.13%。结果表明,该模型能反映出电火花线切割SKD11模具钢的工艺规律并能成功预测出Ra和MRR,为电火花线切割SKD11模具钢工艺参数的选择提供了依据。寻找的一组优化参数对SKD11模具钢的线切割加工具有一定的参考意义。
  • [1] Ming W Y, Zhang Z, Zhang G J, et al. Multi-objective optimization of 3D-surface topography of machining YG15 in WEDM[J]. Materials and Manufacturing Processes, 2014,29(5):514-525
    [2] Ho K H, Newman S T, Rahimifard S, et al. State of the art in wire electrical discharge machining (WEDM)[J]. International Journal of Machine Tools and Manufacture, 2004,44(12-13):1247-1259
    [3] 陈志,李贺,张臻,等.基于灰色预测模型电火花线切割工艺参数优化[J].机床与液压,2014,42(23):5-8 Chen Z, Li H, Zhang Z, et al. Process parameters optimization in WEDM based on GFM[J]. Machine Tool & Hydraulics, 2014,42(23):5-8(in Chinese)
    [4] 廖剑霞,陈浩东,黄祯祥,等.复合运丝型电火花线切割加工参数分析与研究[J].机械科学与技术,2008,27(1):119-121,126 Liao J X, Chen H D, Huang Z X, et al. Study of machining parameters for compound-threading wire electrical discharge machining[J]. Mechanical Science and Technology for Aerospace Engineering, 2008,27(1):119-121,126(in Chinese)
    [5] Huang Y, Ming W Y, Guo J W, et al. Optimization of cutting conditions of YG15 on rough and finish cutting in WEDM based on statistical analyses[J]. The International Journal of Advanced Manufacturing Technology, 2013,69(5-8):993-1008
    [6] 边留进,林子超,孙方宏,等.基于正交试验的慢走丝电火花线切割加工的参数优化[J].现代制造工程,2013,(10):1-5,93 Bian L J, Lin Z C, Sun F H, et al. Optimization of low speed WEDM process parameters based on orthogonal experimental method[J]. Modern Manufacturing Engineering, 2013,(10):1-5,93(in Chinese)
    [7] 高霁,孙瑶,王頔.灰色模型电火花磨削蜂窝环的试验研究[J].机械设计与制造,2014,(5):124-127 Gao J, Sun Y, Wang D. Research of gray GM model EDG honeycomb[J]. Machinery Design & Manufacture, 2014,(5):124-127(in Chinese)
    [8] 刘思峰,谢乃明.灰色系统理论及其应用[M].4版. 北京:科学出版社,2008 Liu S F, Xie N M. The grey system and its application[M]. 4th ed. Beijing:Science Press, 2008(in Chinese)
    [9] 李俊峰,戴文战.基于插值和Newton-Cores公式的GM(1,1)模型的背景值构造新方法与应用[J].系统工程理论与实践,2004,24(10):122-126 Li J F, Dai W Z. A new approach of background value-building and its application based on data interpolation and Newton-Cores formula[J]. Systems Engineering-Theory & Practice, 2004,24(10):122-126(in Chinese)
    [10] 董奋义,田军.背景值和初始条件同时优化的GM(1,1)模型[J].系统工程与电子技术力动,2007,29(3):464-466 Dong F Y, Tian J. Optimization integrated background value with original condition for GM (1,1)[J]. Systems Engineering and Electronics, 2007,29(3):464-466(in Chinese)
    [11] 郭玉坤,蔡安江,许睿.电火花线切割工艺模型优化与加工参数优选的研究[J].矿山机械,2010,38(16):38-41 Guo Y K, Cai A J, Xu R. Research on optimizing WEDM process model and processing parameters[J]. Mining & Processing Equipment, 2010,38(16):38-41(in Chinese)
    [12] 王小川,史峰,郁磊,等.MATLAB神经网络43个案例分析[M].北京:北京航空航天大学出版社,2013 Wang X C, Shi F, Yu L, et al. MATLAB neural network 43 case analysis[M]. Beijing:Beijing University of Aeronautics and Astronautics Press, 2013(in Chinese)
    [13] Gan R J, Chen X J, Yan Y, et al. Application of a hybrid method combining grey model and back propagation artificial neural networks to forecast hepatitis B in China[J]. Computational and Mathematical Methods in Medicine, 2015,2015:328273
    [14] 李小燕.灰色神经网络预测模型的优化研究[D].武汉:武汉理工大学,2009 Li X Y. Study on optimized grey neural network prediction models[D]. Wuhan:Wuhan University of Technology, 2009(in Chinese)
    [15] 王守相,张娜.基于灰色神经网络组合模型的光伏短期出力预测[J].电力系统自动化,2012,36(19):37-41 Wang S X, Zhang N. Short-term output power forecast of photovoltaic based on a grey and neural network hybrid model[J]. Automation of Electric Power Systems, 2012,36(19):37-41(in Chinese)
  • 加载中
计量
  • 文章访问数:  276
  • HTML全文浏览量:  32
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-23
  • 刊出日期:  2017-01-16

目录

    /

    返回文章
    返回