[1]
|
蒋玲莉,刘义伦,李学军,等.小波包去噪与改进HHT的微弱信号特征提取[J].振动、测试与诊断,2010,30(5):510-513 Jiang L L, Liu Y L, Li X J, et al. Feature extraction of weak signal using wavelet packet Denoising and improved hilbert-huang transformation[J]. Journal of Vibration, Measurement & Diagnosis, 2010,30(5):510-513 (in Chinese)
|
[2]
|
冯辅周,司爱威,饶国强,等.基于小波相关排列熵的轴承早期故障诊断技术[J].机械工程学报,2012,48(13):73-79 Feng F Z, Si A W, Rao G Q, et al. Early fault diagnosis technology for bearing based on wavelet correlation permutation entropy[J]. Journal of Mechanical Engineering, 2012,48(13):73-79 (in Chinese)
|
[3]
|
周智,朱永生,张优云,等.基于EMD间隔阈值消噪与极大似然估计的滚动轴承故障诊断方法[J].振动与冲击,2013,32(9):155-159 Zhou Z, Zhu Y S, Zhang Y Y, et al. Fault diagnosis of rolling bearings based on EMD Interval-Threshold denoising and maximum likelihood estimation[J]. Journal of Vibration and Shock, 2013,32(9):155-159 (in Chinese)
|
[4]
|
Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000,290(5500):2323-2326
|
[5]
|
Tenenbaum J B, de Silva V, Langfold J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000,290(5500):2319-2323
|
[6]
|
Balasubramanian M, Schwartz E L, Tenenbaum J B, et al. The isomap algorithm and topological stability[J]. Science, 2002,295(5552):7
|
[7]
|
Zhang Z Y, Zha H Y. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment[J]. SIAM Journal of Scientific Computing, 2005,26(1):313-338
|
[8]
|
Shao R P, Hu W T, Wang Y Y, et al. The fault feature extraction and classification of gear using principal component analysis and kernel principal component analysis based on the wavelet packet transform[J]. Measurement, 2014,54:118-132
|
[9]
|
Bu Y D, Chen F Q, Pan J C. Stellar spectral subclasses classification based on Isomap and SVM[J]. New Astronomy, 2014,28:35-43
|
[10]
|
徐长发,李国宽.实用小波方法[M].武汉:华中科技大学出版社,2001 Xu C F, Li G K. Practical wavelet method[M]. Wuhan: Huazhong University of Science and Technology Press, 2001 (in Chinese)
|
[11]
|
Bae S H, Choi J Y, Qiu, J, et al. Dimension reduction and Visualization of large high-dimensional data via interpolation[C]//Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing. New York, NY, USA: ACM, 2010:203-214
|
[12]
|
Hinton G E, Roweis S T. Stochastic neighbor embedding[C]//Advances in Neural Information Processing Systems 15. Cambridge, MA: MIT Press, 2002,15:833-840
|
[13]
|
Bunte K, Haase S, Biehl M, et al. Stochastic neighbor embedding (SNE) for dimension reduction and visualization using arbitrary divergences[J]. Neurocomputing, 2012,90:23-45
|
[14]
|
Gisbrecht A, Mokbel B, Hammer B. Linear basis-function t-SNE for fast nonlinear dimensionality reduction[C]//Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN). Brisbane, QLD: IEEE, 2012:1-8
|
[15]
|
van der Maaten L, Hinton G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008,9(11):2579-2605
|