留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

概率神经网络用于机匣振动故障诊断

杨一舟 蒋东翔

杨一舟, 蒋东翔. 概率神经网络用于机匣振动故障诊断[J]. 机械科学与技术, 2016, 35(12): 1805-1810. doi: 10.13433/j.cnki.1003-8728.2016.1201
引用本文: 杨一舟, 蒋东翔. 概率神经网络用于机匣振动故障诊断[J]. 机械科学与技术, 2016, 35(12): 1805-1810. doi: 10.13433/j.cnki.1003-8728.2016.1201
Yang Yizhou, Jiang Dongxiang. Casing Vibration Fault Diagnosis based on Probabilistic Neural Networks[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(12): 1805-1810. doi: 10.13433/j.cnki.1003-8728.2016.1201
Citation: Yang Yizhou, Jiang Dongxiang. Casing Vibration Fault Diagnosis based on Probabilistic Neural Networks[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(12): 1805-1810. doi: 10.13433/j.cnki.1003-8728.2016.1201

概率神经网络用于机匣振动故障诊断

doi: 10.13433/j.cnki.1003-8728.2016.1201
基金项目: 

国家自然科学基金项目(11572167)资助

详细信息
    作者简介:

    杨一舟(1992-),硕士研究生,研究方向为旋转机械故障诊断,sloyyz@gmail.com

    通讯作者:

    蒋东翔(联系人),教授,博士,jiangdx@tsinghua.edu.cn

Casing Vibration Fault Diagnosis based on Probabilistic Neural Networks

  • 摘要: 对机匣振动加速度信号进行采集与分析是航空发动机振动故障诊断的重要方法。对振动信号进行处理与特征提取后,可以利用神经网络非线性映射的能力,对振动故障实现分类。利用转子-轴承-机匣耦合振动实验台模拟了5种风扇机匣的振动故障,从频谱的初步分析中并未能够实现对故障的准确判断。对振动数据进行了处理,提取了振动波形的频域与幅域参数,采用概率神经网络的方法实现单一故障的分类,并对不同参数所训练的网络进行了比较,检验了该诊断方法对于机匣振动故障的可行性。
  • [1] 邓明,金业壮.航空发动机故障诊断[M].北京:北京航空航天大学出版社,2012 Deng M, Jin Y Z. Aeroengine fault diagnosis[M]. Beijing: Beihang University Press, 2012 (in Chinese)
    [2] 史忠植.神经网络[M].北京:高等教育出版社,2009 Shi Z Z. Neural networks[M]. Beijing: Higher Education Press, 2009 (in Chinese)
    [3] Hoffman A J, van der Merwe N T. The application of neural networks to vibrational diagnostics for multiple fault conditions[J]. Computer Standards & Interfaces, 2002,24(2):139-149
    [4] Chen G. Study on the recognition of aero-engine blade-casing rubbing fault based on the casing vibration acceleration[J]. Measurement, 2015,65:71-80
    [5] 陈果,李成刚,王德友.航空发动机转子-滚动轴承-支承-机匣耦合系统的碰摩故障分析与验证[J].航空动力学报,2008,23(7):1304-1311 Chen G, Li C G, Wang D Y. Nonlinear dynamic analysis and experiment verification of rubbing faults of rotor-ball bearing-support-stator coupling system for aero-engine[J]. Journal of Aerospace Power, 2008,23(7):1304-1311 (in Chinese)
    [6] 姜广义,王娟,姜睿.航空发动机风扇机匣振动故障分析[J].航空发动机,2011,37(5):38-40,44 Jiang G Y, Wang J, Jiang R. Aeroengine fan casing vibration fault analysis[J]. Aeroengine, 2011,37(5):38-40,44 (in Chinese)
    [7] 王树兰,刘金南.某航空发动机风扇机匣振动故障诊断[C]//2010航空试验测试技术峰交会论文集.上海:中国航空学会,2010 Wang S L, Liu J N. The vibration fault diagnosis for the aeroengine fan case[C]//Aviation Test Technology Symposium. Shanghai: China Aviation Society, 2010 (in Chinese)
    [8] 党相懿.机匣振动故障模拟实验和特征提取方法研究[D].北京:清华大学,2014 Dang X Y. Experimental faults simulation of casing and study on features extraction of casing virbration signals[D]. Beijing: Tsinghua University, 2014 (in Chinese)
    [9] 李东文,熊晓燕,李博.振动加速度信号处理探讨[J].机电工程技术,2008,37(9):50-52 Li D W, Xiong X Y, Li B. Research on the processing of vibration acceleration signal[J]. Mechanical & Electrical Engineering Technology, 2008,37(9):50-52 (in Chinese)
    [10] 叶志锋,孙健国.基于概率神经网络的发动机故障诊断[J].航空学报,2002,23(2):155-157 Ye Z F, Sun J G. Probabilistic neural networks based engine fault diagnosis[J]. Acta Aeronautica et Astronautica Sinica, 2002,23(2):155-157 (in Chinese)
    [11] 王仲民,周鹏,李充宁.基于改进概率神经网络的滚动轴承故障诊断[J].机械科学与技术,2013,32(5):729-732 Wang Z M, Zhou P, Li C N. Fault diagnosis of roller bearing based on an improved probabilistic neural network[J]. Mechanical Science and Technology for Aerospace Engineering, 2013,32(5):729-732 (in Chinese)
    [12] Samarasinghe S. Neural networks for applied sciences and engineering: from fundamentals to complex pattern recognition[M]. Boca Raton, FL: CRC Press, 2006
    [13] 何正嘉.机械故障诊断理论及应用[M].北京:高等教育出版社,2010 He Z J. Theories and applications of machinery fault diagnostics[M]. Beijing: Higher Education Press, 2010 (in Chinese)
    [14] 张德丰.MATLAB神经网络应用设计[M].机械工业出版社,2009 Zhang D F. MATLAB neural network design[M]. China Machine Press, 2009 (in Chinese)
    [15] 韩捷,张瑞林.旋转机械故障机理及诊断技术[M].北京:机械工业出版社,1997 Han J, Zhang R L. Fault mechanism and diagnosis technology of rotating machinery[M]. Beijing: China Machine Press, 1997 (in Chinese)
  • 加载中
计量
  • 文章访问数:  139
  • HTML全文浏览量:  18
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-19
  • 刊出日期:  2017-01-05

目录

    /

    返回文章
    返回