[1]
|
Davies G A O, Olsson R. Impact on composite structures[J]. The Aeronautical Journal, 2004,108(1089):541-563
|
[2]
|
Abrate S. Impact on composite structures[M]. London: Cambridge University Press, 1998
|
[3]
|
Abrate S. Impact on laminated composites: recent advances[J]. Applied Mechanics Reviews, 1994,47(11):517-544
|
[4]
|
Chang F K, Chang K Y. A progressive damage model for laminated composites containing stress concentrations[J]. Journal of Composite Materials, 1987,21(9):834-855
|
[5]
|
Choi H Y, Chang F K. A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact[J]. Journal of Composite Materials, 1992,26(14):2134-2169
|
[6]
|
Hou J P, Petrinic N, Ruiz C. A delamination criterion for laminated composites under low-velocity impact[J]. Composites Science and Technology, 2001,61(14):2069-2074
|
[7]
|
Bouvet C, Castanie B, Bizeul M, et al. Low velocity impact modelling in laminate composite panels with discrete interface elements[J]. International Journal of Solids and Structures, 2009,46(14-15):2809-2821
|
[8]
|
Zheng S, Sun C T. A double-plate finite-element model for the impact-induced delamination problem[J]. Composites Science and Technology, 1995,53(1):111-118
|
[9]
|
Li C F, Hu N, Yin Y J, et al. Low-velocity impact-induced damage of continuous fiber-reinforced composite laminates. Part I. An FEM numerical model[J]. Composites Part A: Applied Science and Manufacturing, 2002,33(8):1055-1062
|
[10]
|
Aymerich F, Dore F, Priolo P. Simulation of multiple delaminations in impacted cross-ply laminates using a finite element model based on cohesive interface elements[J]. Composites Science and Technology, 2009,69(11-12):1699-1709
|
[11]
|
Aymerich F, Dore F, Priolo P. Prediction of impact-induced delamination in cross-ply composite laminates using cohesive interface elements[J]. Composites Science and Technology, 2008,68(12):2383-2390
|
[12]
|
Borg R, Nilsson L, Simonsson K. Simulation of low velocity impact on fiber laminates using a cohesive zone based delamination model[J]. Composites Science and Technology, 2004,64(2):279-288
|
[13]
|
Elder D J, Thomson R S, Nguyen M Q, et al. Review of delamination predictive methods for low speed impact of composite laminates[J]. Composite Structures, 2004,66(1-4):677-683
|
[14]
|
Wisnom M R. Modelling discrete failures in composites with interface elements[J]. Composites Part A: Applied Science and Manufacturing, 2010,41(7):795-805
|
[15]
|
Davies G A O, Zhang X. Impact damage prediction in carbon composite structures[J]. International Journal of Impact Engineering, 1995,16(1):149-170
|
[16]
|
Wiggenraad J F M, Zhang X, Davies G A O. Impact damage prediction and failure analysis of heavily loaded, blade-stiffened composite wing panels[J]. Composite Structures, 1999,45(2):81-103
|
[17]
|
Chang F K, Choi H Y, Jeng S T. Study on impact damage in laminated composites[J]. Mechanics of Materials, 1990,10(1-2):83-95
|
[18]
|
Ghelli D, Minak G. Low velocity impact and compression after impact tests on thin carbon/epoxy laminates[J]. Composite Part B: Engineering, 2011,42(7):2067-2079
|
[19]
|
Liu H Q. Ply clustering effect on composite laminates under low-velocity impact using FEA[D]. Cranfield: Cranfield University, 2012
|
[20]
|
Shet C, Chandra N. Analysis of energy balance when using cohesive zone models to simulate fracture processes[J]. Journal of Materials Science and Technology, 2002,124(4):440-450
|
[21]
|
Williams J G, Hadavinia H. Analytical solutions for cohesive zone models[J]. Journal of the Mechanics and Physics of Solids, 2002,50(4):809-825
|
[22]
|
Johnson W S, Mangalgiri P D. Investigation of fiber bridging in double cantilever beam specimens[R]. NASA Technical Memorandum 87716, 1986
|