[1]
|
Luo G W, Xie J H. Hopf bifurcation of a two degree-of-freedom vibro-impact system[J]. Journal of Sound and Vibration, 1998,213(3):391-408
|
[2]
|
Xu J Q, Li Q H, Wang N. Existence and stability of the grazing periodic trajectory in a two-degree-of-freedom vibro-impact system[J]. Applied Mathematics and Computation, 2011,217(12):5537-5546
|
[3]
|
Wagg D J. Rising phenomena and the multi-sliding bifurcation in a two-degree of freedom impact oscillator[J]. Chaos, Solitons & Fractals, 2004,22(3):541-548
|
[4]
|
李群宏,陆启韶.一类双自由度碰振系统运动分析[J].力学学报,2001,33(6):776-786 Li Q H, Lu Q S. Analysis to motions of a two-degree-of-freedom vibro-impact system[J]. Acta Mechanica Sinica, 2001,33(6):776-786 (in Chinese)
|
[5]
|
李飞,丁旺才.多约束碰撞振动系统的粘滞运动分析[J].振动与冲击,2010,29(5):150-156 Li F, Ding W C. Analysis of sticking motion in a vibro-impact system with multiple constraints[J]. Journal of Vibration and Shock, 2010,29(5):150-156 (in Chinese)
|
[6]
|
李万祥,边红丽,蒋湘云.含间隙弹性约束系统的Hopf分岔与混沌研究[J].机械科学与技术,2004,23(10):1212-1214 Li W X, Bian H L, Jiang X Y. Hopf bifurcation and chaos of a system with a pair of symmetric set-up elastic stops[J]. Mechanical Science and Technology, 2004,23(10):1212-1214 (in Chinese)
|
[7]
|
Dankowicz H, Svahn F. On the stabilizability of near-grazing dynamics in impact oscillators[J]. International Journal of Robust and Nonlinear Control, 2007,17(15):1405-1429
|
[8]
|
Misra S, Dankowicz H. Control of near-grazing dynamics and discontinuity-induced bifurcations in piecewise-smooth dynamical systems[J]. International Journal of Robust and Nonlinear Control, 2010,20(16):1836-1851
|
[9]
|
Wang L, Xu W, Zhao R, et al. Tracking desired trajectory in a vibro-impact system using backstepping design[J]. Chinese Physics Letters, 2009,26(10):100503
|
[10]
|
马永靖,丁旺才,杨小刚.碰撞振动系统的参数自调节混沌控制[J].振动与冲击,2007,26(1):24-26,30,34 Ma Y J, Ding W C, Yang X G. Chaos control of a vibro-impact system with parameter adjustment[J]. Journal of Vibration and Shock, 2007,26(1):24-26,30,34 (in Chinese)
|
[11]
|
徐慧东,谢建华.一类单自由度分段线性系统的分岔和混沌控制[J].振动与冲击,2008,27(6):20-24 Xu H D, Xie J H. Bifurcation and chaos control of a single-degree-of-freedom system with piecewise-linearity[J]. Journal of Vibration and Shock, 2008,27(6):20-24 (in Chinese)
|
[12]
|
de Souza S L T, Caldas I L. Controlling chaotic orbits in mechanical systems with impacts[J]. Chaos, Solitons & Fractals, 2004,19(1):171-178
|
[13]
|
de Souza S L T, Caldas I L, Viana R L. Damping control law for a chaotic impact oscillator[J]. Chaos, Solitons & Fractals, 2007,32(2):745-750
|
[14]
|
苟向锋,罗冠炜,吕小红.含双侧刚性约束碰撞振动系统的混沌控制[J].机械科学与技术,2011,30(8):1262-1266 Gou X F, Luo G W, Lü X H. Chaos Control of a Two-degree-of-freedom Vibrating System with Two Rigid Constraints[J]. Mechanical Science and Technology for Aerospace Engineering, 2011,30(8):1262-1266 (in Chinese)
|
[15]
|
Luo G W, Lv X H. Controlling bifurcation and chaos of a plastic impact oscillator[J]. Nonlinear Analysis: Real World Applications, 2009,10(4):2047-2061
|