留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用声音信号能量比在线识别钢材材质

秦志英 刘尧 董桂西 赵月静

秦志英, 刘尧, 董桂西, 赵月静. 利用声音信号能量比在线识别钢材材质[J]. 机械科学与技术, 2016, 35(5): 800-804. doi: 10.13433/j.cnki.1003-8728.2016.0526
引用本文: 秦志英, 刘尧, 董桂西, 赵月静. 利用声音信号能量比在线识别钢材材质[J]. 机械科学与技术, 2016, 35(5): 800-804. doi: 10.13433/j.cnki.1003-8728.2016.0526
Qin Zhiying, Liu Yao, Dong Guixi, Zhao Yuejing. On-line Recognization of Steels by Using Energy Ratio of Sound Signal[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(5): 800-804. doi: 10.13433/j.cnki.1003-8728.2016.0526
Citation: Qin Zhiying, Liu Yao, Dong Guixi, Zhao Yuejing. On-line Recognization of Steels by Using Energy Ratio of Sound Signal[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(5): 800-804. doi: 10.13433/j.cnki.1003-8728.2016.0526

利用声音信号能量比在线识别钢材材质

doi: 10.13433/j.cnki.1003-8728.2016.0526
基金项目: 

国家自然科学基金项目(11002046)与河北省自然科学基金项目(A2011208007)资助

详细信息
    作者简介:

    秦志英(1976-),副教授,博士,硕士生导师,研究方向为机械测试技术与系统动力学,qinzhy76@163.com

On-line Recognization of Steels by Using Energy Ratio of Sound Signal

  • 摘要: 针对在铁塔加工过程中角钢在冲孔时会发出一定的声音,提出一种利用声音信号能量比在线识别Q235和Q345两种材质角钢的方法。搭建实验系统,现场采集加工Q235和Q345两种材质角钢的声音信号,分析不同型号角钢对应声音信号的频谱特征,计算信号在特定高频频带与低频频带的能量比值,以及能量比均值和标准差,找到其区别两种材质的能量比取值范围。并且现场采集一定量的信号样本,根据统计学原理并经过试验验证,识别两种钢材材质的正确率可达到95%以上。
  • [1] 何敏娟,梁峰,马人乐.大型超高钢结构电视塔模拟地震振动台试验研究[J].振动与冲击,2010,29(1):78-80 He M J, Liang F, Ma R L. Shaking table test for a super high steel TV tower[J]. Journal of Vibration and Shock, 2010,29(1):78-80 (in Chinese)
    [2] 胡飞飞,陈晓东,张旭光,等.输电铁塔材质韧脆转变温度及检测方法研究[C]//2013年中国电机工程学会年会论文集,成都,2013:1574-1577 Hu F F, Chen X D, Zhang X G, et al. Study on ductile-brittle transition temperature and measurement technique of power transmission tower steel[C]//Proceedings of the Chinese Society for Electrical Engineering, Chengdu, 2013:1574-1577 (in Chinese)
    [3] 樊彬彬,陈红冬,刘纯.500kV输电线路铁塔横担变形材质检测及失效分析[J].湖南电力,2009,29(4):18-22 Fan B B, Chen H D, Liu C. Material test and fault analysis of deformation of cross arm of 500kV transmission line tower[J]. Hunan Electric Power, 2009,29(4):18-22 (in Chinese)
    [4] 陈家焱,陈冬娇,张达响.基于Matlab的声音信号采集与分析处理[J].计算机与现代化,2005,(6):92-96 Chen J Y, Chen D J, Zhang D X. Collecting and processing of sound signal with Matlab[J]. Computer and Modernization, 2005,(6):92-96 (in Chinese)
    [5] 王奇,刘利君,杨克己,等.一种紧凑型汽车座椅水平驱动器的声音品质识别[J].机械科学与技术,2012,31(1):167-172 Wang Q, Liu L J, Yang K J, et al. Sound quality evaluation of a kind of compact horizontal driver in advanced automobile seats[J]. Mechanical Science and Technology for Aerospace Engineering, 2012,31(1):167-172 (in Chinese)
    [6] Cowling M, Sitte R. Comparison of techniques for environmental sound recognition[J]. Pattern Recognition Letters, 2003,24(15):2895-2907
    [7] 王浩安,李应.噪声环境下基于能量检测的生态声音识别[J].计算机工程,2013,39(2):168-171 Wang H A, Li Y. Ecological sound recognition based on energy detection under noise environment[J]. Computer Engineering, 2013,39(2):168-171 (in Chinese)
    [8] Abu-El-Quran A R, Goubran R A, Chan A D C. Security-monitoring using microphone arrays and audio classification[J]. IEEE Transactions on Instrumental and Measurement, 2006,55(4):1025-1032
    [9] 刘方,沈长青,何清波,等.基于时域多普勒校正和EEMD的列车轴承道旁声音监测故障诊断方法研究[J].振动与冲击,2013,32(24):104-109 Liu F, Shen C Q, He Q B, et al. Wayside acoustic fault diagnosis for locomotive bearings based on doppler effect correction and EEMD method in time domain[J]. Journal of Vibration and Shock, 2013,32(24):104-109 (in Chinese)
    [10] 田昊,唐力伟,陈红.基于瞬态声与阶次倒谱的齿轮箱故障诊断[J].振动、测试与诊断,2009,29(2):137-140 Tian H, Tang L W, Chen H, et al. Fault diagnosis of gearbox by using transient acoustic signal and order cepstrum[J]. Journal of Vibration, Measurement & Diagnosis, 2009,29(2):137-140 (in Chinese)
    [11] Pucher M. Wordnet-based semantic relatedness measures in automatic speech recognition for meetings[C]//Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions, Stroudsburg, PA, USA: Association for Computational Linguistics, 2007:129-132
    [12] Veisi H, Sameti H. The combination of CMS with PMC for improving robustness of speech recognition systems[C]//Proceedings of the 13th International CSI Computer Conference, Kish Island, Iran: Springer, 2009:825-829
    [13] 李振国,宋吉江,李月然.基于虚拟仪器的声音识别系统设计[J].山东理工大学学报(自然科学版),2011,25(1):101-103 Li Z G, Song J J, Li Y R. Design of audio-recognition system based on virtual instrument[J]. Journal of Shandong University of Technology (Natural Science Edition), 2011,25(1):101-103 (in Chinese)
    [14] Wald M. Using automatic speech recognition to enhance education for all students: turning a vision into reality[C]//Proceedings of the 34th ASEE/IEEE Frontiers in Education Conference, Savannah, GA: IEEE, 2004: 23-25
    [15] 颜鑫,李应.利用抗噪幂归一化倒谱系数的鸟类声音 识别方法[J].电子学报,2013,41(2):295-300 Yan X, Li Y. Anti-noise power normalized cepstral coefficients in bird sounds recognition[J]. Acta Electronica Sinica, 2013,41(2):295-300 (in Chinese)
    [16] 熊诗波,黄长艺.机械工程测试技术基础[M].3版.北京:机械工业出版社,2011 Xiong S B, Huang C Y. Mechanical engineering testing technology[M]. 3 edition. Beijing: Mechanical Industry Press, 2011 (in Chinese)
  • 加载中
计量
  • 文章访问数:  234
  • HTML全文浏览量:  36
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-27
  • 刊出日期:  2016-05-05

目录

    /

    返回文章
    返回