留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多源信息的加权证据理论融合识别方法

向阳辉 张干清 庞佑霞 陈蕾 谢邵辉

向阳辉, 张干清, 庞佑霞, 陈蕾, 谢邵辉. 多源信息的加权证据理论融合识别方法[J]. 机械科学与技术, 2016, 35(3): 381-385. doi: 10.13433/j.cnki.1003-8728.2016.0310
引用本文: 向阳辉, 张干清, 庞佑霞, 陈蕾, 谢邵辉. 多源信息的加权证据理论融合识别方法[J]. 机械科学与技术, 2016, 35(3): 381-385. doi: 10.13433/j.cnki.1003-8728.2016.0310
Xiang Yanghui, Zhang Ganqing, Pang Youxia, Chen Lei, Xie Shaohui. A Weighted Fusion Method for Recognizing Multi-source Information Based on Weighted Evidence Theory[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(3): 381-385. doi: 10.13433/j.cnki.1003-8728.2016.0310
Citation: Xiang Yanghui, Zhang Ganqing, Pang Youxia, Chen Lei, Xie Shaohui. A Weighted Fusion Method for Recognizing Multi-source Information Based on Weighted Evidence Theory[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(3): 381-385. doi: 10.13433/j.cnki.1003-8728.2016.0310

多源信息的加权证据理论融合识别方法

doi: 10.13433/j.cnki.1003-8728.2016.0310
基金项目: 

国家自然科学基金项目(51475049)、校人才引进科研基金项目(12003,12004)、湖南省"十二五"重点建设学科资助项目及湖南省教育厅资助科研项目(15C0123,12A016,14C0094)资助

详细信息
    作者简介:

    向阳辉(1981-),讲师,硕士,研究方向为故障诊断、决策识别,xiangyanghui@163.com

A Weighted Fusion Method for Recognizing Multi-source Information Based on Weighted Evidence Theory

  • 摘要: 为了有效融合待识别系统的多源证据信息,提高模式识别的准确性,提出了一种多源证据信息加权融合的模式识别方法。该方法基于不同来源证据对辨识框架中各命题识别具有不同可靠性这一事实,将各证据对各命题识别的正确率转换成加权系数,通过研究证据理论的加权改进,构建加权融合的识别体系,保证各证据在模式识别过程中存在的不确定性经过融合后能够最大限度削弱,从而从理论上降低了模式识别的不确定性。实例分析表明,多源信息加权融合后的识别结果可信度明显增大、识别正确率显著提高,充分验证了该融合识别方法能够有效提高模式识别的准确性。
  • [1] Dempster A P. Upper and lower probabilities induced by a multivalued mapping[J]. The Annals of Mathematical Statistics, 1967,38(2):325-339
    [2] Shafer G. A mathematical theory of evidence[M]. Princeton: Princeton University Press, 1976
    [3] Sevastianov P, Dymova L, Bartosiewicz P. A framework for rule-base evidential reasoning in the interval setting applied to diagnosing type 2 diabetes[J]. Expert Systems with Applications, 2012,39(4):4190-4200
    [4] Mokhtari K, Ren J, Roberts C, et al. Decision support framework for risk management on sea ports and terminals using fuzzy set theory and evidential reasoning approach[J]. Expert Systems with Applications, 2012,39(5):5087-5103
    [5] 姚爽,郭亚军,黄玮强.基于证据距离的改进DS/AHP多属性群决策方法[J].控制与决策,2010,25(6):894-898 Yao S, Guo Y J, Huang W Q. An improved method of aggregation in DS/AHP for multi-criteria group decision-making based on distance measure[J]. Control and Decision, 2010,25(6):894-898 (in Chinese)
    [6] 韩德强,杨艺,韩崇昭.DS证据理论研究进展及相关问题探讨[J].控制与决策,2014,29(1):1-11 Han D Q, Yang Y, Han C Z. Advances in DS evidence theory and related discussions[J]. Control and Decision, 2014,29(1):1-11 (in Chinese)
    [7] Fu C, Yang S L. The combination of dependence-based interval-valued evidential reasoning approach with balanced scorecard for performance assessment[J]. Expert Systems with Applications, 2012,39(3):3717-3730
    [8] 韩东,李洪儒,许葆华.基于广义证据一致量和信息量因子的证据组合规则[J].仪器仪表学报,2010,31(12):2724-2728 Han D, Li H R, Xu B H. Combination rule of evidence based on general evidence consistency degree and information content factor[J]. Chinese Journal of Scientific Instrument, 2010,31(12):2724-2728 (in Chinese)
    [9] 肖文,王正友,王耀德.一种相关证据的合成规则[J].控制与决策,2011,26(5):773-776 Xiao W, Wang Z Y, Wang Y D. Combination rule for dependent evidences[J]. Control and Decision, 2011,26(5):773-776 (in Chinese)
    [10] 张锟,张昌芳,李杰.基于新冲突度量的属性信息相关算法[J].控制与决策,2011,26(4):601-605 Zhang K, Zhang C F, Li J. Attribute information correlation algorithm based on new conflict measure[J]. Control and Decision, 2011,26(4):601-605 (in Chinese)
    [11] Destercke S, Burger T. Revisiting the notion of conflicting belief functions[C]//Proceedings of the 2nd International Conference on Belief Functions. Compiegne: Springer, 2012:153-160
    [12] 张燕君,龙呈,李达.基于冲突表示的冲突证据融合方法[J].模式识别与人工智能,2013,26(9):853-858 Zhang Y J, Long C, Li D. Conflict evidence fusion method based on conflict representation[J]. Pattern Recognition and Aitificial Intelligence, 2013,26(9):853-858 (in Chinese)
    [13] 王娜,梁禹.基于神经网络与D-S证据理论的故障诊断[J].仪器仪表学报,2005,26(8):773-774 Wang N, Liang Y. Fault diagnosis based on integrated neural network and D-S evidential reasoning[J]. Chinese Journal of Scientific Instrument, 2005,26(8):773-774 (in Chinese)
    [14] 姜万录,吴胜强.基于SVM和证据理论的多数据融合故障诊断方法[J].仪器仪表学报,2010,31(8):1738-1743 Jiang W L, Wu S Q. Multi-data fusion fault diagnosis method based on SVM and evidence theory[J]. Chinese Journal of Scientific Instrument, 2010,31(8):1738-1743 (in Chinese)
    [15] 王奉涛,马孝江,朱泓,等.基于Dempster-Shafer证据理论的信息融合在设备故障诊断中应用[J].大连理工大学学报,2003,43(4):470-474 Wang F T, Ma X J, Zhu H, et al. Research on fault diagnosis method based on Dempster-Shafer evidential theory[J]. Journal of Dalian University of Technology, 2003,43(4):470-474 (in Chinese)
  • 加载中
计量
  • 文章访问数:  128
  • HTML全文浏览量:  22
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-09
  • 刊出日期:  2016-03-05

目录

    /

    返回文章
    返回