留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Kriging模型的小子样失效数据可靠性分析

任博 吕震宙 刘超 段飞蛟

任博, 吕震宙, 刘超, 段飞蛟. 基于Kriging模型的小子样失效数据可靠性分析[J]. 机械科学与技术, 2015, 34(11): 1789-1793. doi: 10.13433/j.cnki.1003-8728.2015.1127
引用本文: 任博, 吕震宙, 刘超, 段飞蛟. 基于Kriging模型的小子样失效数据可靠性分析[J]. 机械科学与技术, 2015, 34(11): 1789-1793. doi: 10.13433/j.cnki.1003-8728.2015.1127
Ren Bo, Lü Zhenzhou, Liu Chao, Duan Feijiao. Reliability Analysis for Failure Data of Small Samples Based on Kriging Model[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(11): 1789-1793. doi: 10.13433/j.cnki.1003-8728.2015.1127
Citation: Ren Bo, Lü Zhenzhou, Liu Chao, Duan Feijiao. Reliability Analysis for Failure Data of Small Samples Based on Kriging Model[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(11): 1789-1793. doi: 10.13433/j.cnki.1003-8728.2015.1127

基于Kriging模型的小子样失效数据可靠性分析

doi: 10.13433/j.cnki.1003-8728.2015.1127
基金项目: 

国家自然科学基金项目(51175425)与航空基金项目(2011ZA53015)资助

详细信息
    作者简介:

    任博(1985-),博士研究生,研究方向为飞行器结构/机构可靠性工程,rabber2003@163.com

    通讯作者:

    吕震宙,教授,博士生导师,zhenzhoulu@nwpu.edu.cn

Reliability Analysis for Failure Data of Small Samples Based on Kriging Model

  • 摘要: 针对高可靠性航空柱塞泵现场故障数据稀少,难以准确确定数据分布类型的问题,提出采用Kriging方法建立部件故障不确定性的精确描述模型,挖掘部件可靠性信息,并基于不确定性描述的隐式Kriging模型进行蒙特卡洛抽样,产生与原始数据统计规律一致的大容量样本,为基于蒙特卡洛方法的结构系统可靠性分析奠定基础。此外,为衡量所提模型与原始数据统计分布特性的差异,提出基于累积分布函数的单位面积期望误差测度。测度分析结果表明,Kriging方法所建的部件故障不确定性模型比传统方法更准确。以航空柱塞泵为例,进行可靠性数据分析,验证所提方法的正确与高效。
  • [1] 蒋德义.航空工程[M].成都:成都飞机设计研究所,2004 Jiang D Y. The engineering of aviation[M]. Chengdu: The College of Aircraft Design in Chengdu, 2004(in Chinese)
    [2] 唐有才,刘振刚,王占勇,等.飞机液压系统故障多的原因探讨及对策[J].液压与气动,2009,(10):84-86 Tang Y C, Liu Z G, Wang Z Y. The analysis and counter measure of the reason for military aircraft hydraulic system fault[J]. Chinese Hydraulic and Pneumatics, 2009,(10):84-86 (in Chinese)
    [3] 赵宇.可靠性数据分析[M].北京:国防工业出版社,2011 Zhao Y. Data analysis of reliability[M]. Beijing: National Defense Industry Press, 2011 (in Chinese)
    [4] 贾志新,张宏斌,郗安民.基于径向基函数神经网络的电火花线切割机床可靠性数据模拟生成[J].机械工程学报,2010,46(2):145-149 Jia Z X, Zhang H B, Xi A M. Simulating and extending wire electrical discharge machining reliability data by radial basis function neural network[J]. Journal of Mechanical Engineering, 2010,46(2):145-149 (in Chinese)
    [5] 高萍.基于可靠性分析的复杂设备预防性维修决策研究[D].北京:清华大学,2008 Gao P. The research on preventive maintenance decision of complex equipment based on reliability analysis[D]. Beijing:Tsinghua University,2008 (in Chinese)
    [6] Poon F C S. Comments on approximating discrete probability distributions with dependence trees[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,11(3):333-335
    [7] Larssen T, Huseby R B, Cosby B J, et al. Forecasting acidification effects using a Bayesian calibration and uncertainty propagation approach[J]. Environmental Science and Technology, 2006,40(24):7841-7847
    [8] Fox D, Hightower J, Liao L, et al. Bayesian filtering for location estimation[J]. IEEE Pervasive Computing, 2003,2(3):24-33
    [9] Matheron G. Principles of geostatistics[J]. Economic Geology, 1963,58(8):1246-1266
    [10] Chills J P,Delfiner P. Geostatistics modeling spatial uncertainty[M]. New York: Wiley, 1999
    [11] Skata S, Ashida F, Zako M. Structural optimization using kriging approximation[J]. Computer Methods in Applied Mathematics and Engineering, 2003,192(7-8):923-939
    [12] Kaymaz I. Application of Kriging method to structural reliability problems[J]. Structural Safety, 2005,27(2):133-151
    [13] Wang P, Lu Z Z, Tang Z C. An application of the Kriging method in global sensitivity analysis with parameter uncertainty[J]. Applied Mathematical Modelling, 2013,37(9):6543-6555
    [14] Castet J F, Saleh J H. Satellite and satellite subsystems reliability: Statistical data analysis and modeling[J]. Reliability Engineering and System Safety, 2009,94(11):1718-1728
    [15] 吕震宙,宋述芳,李洪双,等.结构机构可靠性及可靠性灵敏度分析[M].北京:科学出版社,2009 Lü Z Z, Song S F, Li H S. Reliability and sensitivity analysis of structure[M]. Beijing:Science Press, 2009(in Chinese)
    [16] 孔亮,丁艳军,张毅.基于Kriging方法的电站锅炉NOx工排放自适应建模[J].清华大学学报,2008,48(5):848-851 Kong L, Ding Y J, Zhang Y. Adaptive kring model for NOx emissions from utility boilers[J]. Journal of Tsinghua University,2008,48(5):848-851 (in Chinese)
  • 加载中
计量
  • 文章访问数:  187
  • HTML全文浏览量:  26
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-17
  • 刊出日期:  2015-11-05

目录

    /

    返回文章
    返回