留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光冲击AZ31镁合金的腐蚀疲劳特性研究

李兴成 卢雅琳 周金宇 陈菊芳

李兴成, 卢雅琳, 周金宇, 陈菊芳. 激光冲击AZ31镁合金的腐蚀疲劳特性研究[J]. 机械科学与技术, 2015, 34(11): 1779-1783. doi: 10.13433/j.cnki.1003-8728.2015.1125
引用本文: 李兴成, 卢雅琳, 周金宇, 陈菊芳. 激光冲击AZ31镁合金的腐蚀疲劳特性研究[J]. 机械科学与技术, 2015, 34(11): 1779-1783. doi: 10.13433/j.cnki.1003-8728.2015.1125
Li Xingcheng, Lu Yalin, Zhou Jinyu, Chen Jufang. Study on Corrosion Fatigue Performance of AZ31 Magnesium Alloy with Laser Shock Processing[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(11): 1779-1783. doi: 10.13433/j.cnki.1003-8728.2015.1125
Citation: Li Xingcheng, Lu Yalin, Zhou Jinyu, Chen Jufang. Study on Corrosion Fatigue Performance of AZ31 Magnesium Alloy with Laser Shock Processing[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(11): 1779-1783. doi: 10.13433/j.cnki.1003-8728.2015.1125

激光冲击AZ31镁合金的腐蚀疲劳特性研究

doi: 10.13433/j.cnki.1003-8728.2015.1125
基金项目: 

国家自然科学基金项目(51275221)资助

详细信息
    作者简介:

    李兴成(1968-),副教授,博士,研究方向为金属材料表面强化处理技术,sgylxc@163.com

Study on Corrosion Fatigue Performance of AZ31 Magnesium Alloy with Laser Shock Processing

  • 摘要: 为探究激光冲击对AZ31镁合金腐蚀疲劳性能的影响,采用钕玻璃激光器激光冲击处理AZ31镁合金表面,采用透射电子显微镜观察激光冲击后镁合金表层的微观组织,分别在3.5%(wt)氯化钠溶液和空气中测试其三点弯曲腐蚀疲劳性能。微观组织表明激光冲击波导致镁合金表面层产生超高应变速率塑性变形,晶粒内部存在与孪晶相互交叉、相互缠结的高密度位错而导致晶粒细化;腐蚀疲劳曲线表明激光冲击试样疲劳寿命高于冲击前试样,在空气中疲劳寿命提高约38.25%,在溶液中疲劳寿命提高约183.47%,激光冲击AZ31镁合金所产生的微观组织和残余应力是降低其裂纹扩展速率的主要因素。
  • [1] 王荣.金属材料的腐蚀疲劳[M].西安:西北工业大学出版社,2001 Wang R. Corrosion and fatigue of metal[M]. Xi'an: Northwestern Ploytechnical University, 2001 (in Chinese)
    [2] 黄小光.腐蚀疲劳点蚀演化与裂纹扩展机理研究[D].上海:上海交通大学,2013:5-10 Hu X G. Mechanism study of pit evolution and crack propagation for corrosion fatigue[D]. Shanghai: Shanghai Jiaotong University, 2013:5-10 (in Chinese)
    [3] 孟祥琦.铝合金材料的应力腐蚀及腐蚀疲劳特性实验研究[D].上海:上海交通大学,2012:14-16 Meng X Q. Experimental study on stress corrosion and corrosion fatigue behavior of aluminum alloy materials[D]. Shanghai: Shanghai Jiaotong University, 2012:14-16 (in Chinese)
    [4] Ji D M, Zhou C Y, Hu Y R. Crack growth rate of 07MnNiCrMoVDR steel in H2S solution[J]. Journal of Ship Mechanics, 2005,9(6):103-112
    [5] 张波,张正贵,韩恩厚,等.LY12CZ铝合金铆接联接件在3.5%NaCl溶液中的腐蚀疲劳失效行为研究[J].金属学报,2000,36(8):842-846 Zhang B, Zhang Z G, Han E H, et al. Study of corrosion fatigue for LY12CZ aluminum alloy riveted lap-splice joints[J]. Acta Metallurgica Sinica, 2000,36(8):842-846 (in Chinese)
    [6] 常红,韩恩厚,王俭秋,等.阴极极化对LY12CZ铝合金腐蚀疲劳寿命的影响[J].金属学报,2005,41(5):556-560 Chang H, Han E H, Wang J Q, et al. Influence of cathodic polarization on corrosion fatigue life of aluminium alloy LY12CZ[J]. Acta Metallurgica Sinica, 2005,41(5):556-560 (in Chinese)
    [7] Zhang Y K, You J, Lu J Z, et al. Effects of laser shock processing on stress corrosion cracking susceptibility of AZ31B magnesium alloy[J]. Surface and Coatings Technology, 2010,204(24):3947-3953
    [8] 李兴成,张永康,卢雅琳,等.激光冲击AZ31镁合金抗腐蚀性能研究[J].中国激光,2014,41(4):0403002 Li X C, Zhang Y K, Lu Y L, et al. Research of corrosion resistance for AZ31 magnesium alloy by laser shock processing[J]. Chinese Journal of Lasers, 2014,41(4):0403002 (in Chinese)
    [9] 周建忠,杨继昌,周明,等.约束层刚性对激光诱导冲击波影响的研究[J].中国激光,2002,29(11):1041-1044 Zhou J Z, Yang J C, Zhou M, et al. Experimental study on the effects of overlay properties on laser-induced shock waves[J]. Chinese Journal of Lasers, 2002,29(11):1041-1044 (in Chinese)
    [10] 周建忠,王呈栋,黄舒,等.6061-T6铝合金紧凑拉伸试样激光喷丸强化后的疲劳裂纹扩展性能研究[J].中国激光,2011,38(7) Zhou J Z, Wang C D, Huang S, et al. Study on fatigue crack growth performance of 6061-T6 aluminum alloy after laser shot peening[J]. Chinese Journal of Lasers, 2011,38(7) (in Chinese)
    [11] 聂贵锋,冯爱新,任旭东,等.激光冲击参数对2024铝合金冲击区域的主应力及其方向的影响[J].中国激光,2012,39(1) Nie G F, Feng A X, Ren X D, et al. Effect of laser shock processing parameters on residual principal stresses and its directions of 2024 aluminum alloy[J]. Chinese Journal of Lasers, 2012,39(1) (in Chinese)
    [12] 葛茂忠,张永康,项建云.AZ31B镁合金激光冲击强化及抗应力腐蚀研究[J].中国激光,2010,37(11):2925-2930 Ge M Z, Zhang Y K, Xiang J Y. Research on laser shock strengthening and stress corrosion cracking resistance of AZ31B magnesium alloy[J]. Chinese Journal of Lasers, 2010,37(11):2925-2930 (in Chinese)
    [13] 钟俊伟,鲁金忠,罗开玉,等.AISI 8620合金钢激光冲击强化层摩擦学特性[J].中国激光,2012,39(1):103001 Zhong J W, Lu J Z, Luo K Y, et al. Tribological behaviors of laser shock processing AISI 8620 steel[J]. Chinese Journal of Lasers, 2012,39(1):103001 (in Chinese)
    [14] 余天宇,戴峰泽,张永康,等.平顶光束激光冲击2024铝合金诱导残余应力场的模拟与实验[J].中国激光,2012,39(10) Yu T Y, Dai F Z, Zhang Y K, et al. Simulation and experimental study on residual stress field of 2024 aluminum alloy induced by flat-top laser beam[J]. Chinese Journal of Lasers, 2012,39(10) (in Chinese)
    [15] 国家质量技术监督局.GB/T6398-2000 金属材料疲劳裂纹扩展速率试验方法[S].北京:中国标准出版社,2001 State Bureau of Quality Technical Supervision. GB/T 6398-2000 Standard test method for fatigue crack growth rates of metallic materials[S]. Beijing: China Standard Publishing House, 2001 (in Chinese)
    [16] 蒋祖国.飞机结构腐蚀疲劳[M].北京:航空工业出版社,1992 Jiang Z G. Aircraft structure corrosion fatigue[M]. Beijing: Aviation Industry Press, 1992 (in Chinese)
    [17] 杨勇彪,王富耻,谭成文,等.冲击加载条件下AZ31B镁合金变形孪晶的微观特征[J].兵工学报,2009,30(9):1223-1226 Yang Y B, Wang F C, Tan C W, et al. Microstructure characterization of twinning under impact loading for AZ31B magnesium alloys[J]. Acta Armamentarii, 2009,30(9):1223-1226 (in Chinese)
    [18] Sun H Q, Shi Y N, Zhang M X, et al. Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy[J]. Acta Materialia, 2007,55(3):975-982
    [19] Lu J Z, Luo K Y, Zhang Y K, et al. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel[J]. Acta Materialia, 2010,58(16):5354-5362
    [20] Luo K Y, Lu J Z, Zhang L F, et al. The microstructural mechanism for mechanical property of LY2 aluminum alloy after laser shock processing[J]. Materials & Design, 2010,31(5):2599-2603
  • 加载中
计量
  • 文章访问数:  220
  • HTML全文浏览量:  37
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-26
  • 刊出日期:  2015-11-05

目录

    /

    返回文章
    返回