留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铣削力预测方法和影响因素综述

赵凯 刘战强

赵凯, 刘战强. 铣削力预测方法和影响因素综述[J]. 机械科学与技术, 2015, 34(8): 1190-1200. doi: 10.13433/j.cnki.1003-8728.2015.0810
引用本文: 赵凯, 刘战强. 铣削力预测方法和影响因素综述[J]. 机械科学与技术, 2015, 34(8): 1190-1200. doi: 10.13433/j.cnki.1003-8728.2015.0810
Zhao Kai, Liu Zhanqiang. An Overview on Milling Force Prediction Methods and Influencing Factors[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(8): 1190-1200. doi: 10.13433/j.cnki.1003-8728.2015.0810
Citation: Zhao Kai, Liu Zhanqiang. An Overview on Milling Force Prediction Methods and Influencing Factors[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(8): 1190-1200. doi: 10.13433/j.cnki.1003-8728.2015.0810

铣削力预测方法和影响因素综述

doi: 10.13433/j.cnki.1003-8728.2015.0810
基金项目: 

高档数控机床与基础制造装备科技重大专项项目(2014ZX04012-014)资助

详细信息
    作者简介:

    赵凯(1990-),硕士研究生,研究方向为铣削力预测,zhaokai226@163.com

    通讯作者:

    刘战强,教授,博士生导师,melius@sdu.edu.cn

An Overview on Milling Force Prediction Methods and Influencing Factors

  • 摘要: 为减少航空发动机薄壁件铣削加工过程中的加工变形,提高加工质量,需对铣削加工过程中的切削力进行预测。因此,综述了多远回归分析预测模型、微元铣削力预测模型、有限元预测模型和人工神经网络预测模型,并对切削用量、刀具几何参数、工件材料、冷却作用、刀具材料和刀具磨损对铣削力的影响进行了分析。
  • [1] Wu H, Liu W W, Li X Y, et al. Compensation method based on APDL of machining deformation of thin-wall parts[J]. Aviation Precision Manufacturing Technology, 2012,48(4):35-38 (in Chinese)
    [2] Martelloti M E. An analysis of the milling process[J]. Translation of ASME, 1941,63:677-700
    [3] Qin X D, Zhao J B, Zhang J G, et al. Analysis and modeling about milling force in plunge milling for Ti-6Al-4V based on regression[J]. Journal of Beijing University of Technology, 2006,32(8):737-740 (in Chinese)
    [4] Martellotti M E. An analysis of the milling process, Part II: down milling[J]. Trans. ASME, 1945,67:233-251
    [5] Wang L T, Ke Y L, Huang Z G. Experimental study on milling-force model in aviation aluminum-alloy[J]. China Mechanical Engineering, 2003,14(19):1684-1686 (in Chinese)
    [6] Amaitik S M, Taşgin T T, Kiliç S E. Tool-life modelling of carbide and ceramic cutting tools using multi-linear regression analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2006,220(2):129-136
    [7] Berczyúski S, Gutowski P. Identification of the dynamic models of machine tool supporting systems. Part I: an algorithm of the method[J]. Journal of Vibration and Control, 2006,12(3):257-277
    [8] Luo H B, Zhao J, Li A H, et al. An experiment study on milling forces in high speed milling titanium alloy[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2011,(5):18-20,25 (in Chinese)
    [9] 武辉,刘维伟,李晓燕,万等.基于APDL的薄壁件加工变形补偿方法[J].航空精密制造技术,2012,48(4):35-38
    [10] Pan Y Z, Ai X, Tang Z T, et al. Optimization of tool geometry and cutting parameters based on a predictive model of cutting force[J]. China Mechanical Engineering, 2008,19(4):428-431 (in Chinese)
    [11] Liu C, Wang Y. Dynamic cutting force prediction and analysis influence for milling titanium alloy[J]. Aeronautical Manufacturing Technology, 2010,(22):86-88 (in Chinese)
    [12] 秦旭达,赵剑波,张剑刚,等.基于回归法的钛合金 (Ti-6Al-4V)插铣铣削力建模分析[J].北京工业大学学报,2006,32(8):737-740
    [13] 王立涛,柯映林,黄志刚.航空铝合金7050-T7451铣削力模型的实验研究[J].中国机械工程,2003,14(19):1684-1686
    [14] Wan M, Zhang W H. Overviews of technique research progress of form error prediction and error compensation in milling process[J]. Acta Aeronautica et Astronautica Sinica, 2008,29(5):1340-1349 (in Chinese)
    [15] Qi H J, Zhang D W, Cai Y J, et al. Modeling methodology of flexible milling force for low-rigidity processing system during high speed milling[J]. Journal of Tianjin University, 2010,43(2):143-148 (in Chinese)
    [16] 罗汉兵,赵军,李安海,等.高速铣削钛合金Ti6A4V铣削力试验研究[J].组合机床与自动化加工技术,2011,(5):18-20,25
    [17] 潘永智,艾兴,唐志涛,等.基于切削力预测模型的刀具几何参数和切削参数优化[J].中国机械工程,2008,19(4):428-431
    [18] Liu X B, Long X H, Meng G, et al. The identifications of milling force coefficients and eccentricity based on multi-objective optimization in frequency-domain[J]. Journal of Mechanical Engineering, 2011,47(7):185-190 (in Chinese)
    [19] Li Y S. Milling force modeling and experimental research based on the Fourier series[D]. Dalian: Dalian University of Technology, 2009 (in Chinese)
    [20] 刘畅,王焱.钛合金动态铣削力预测及其影响因素分析[J].航空制造技术,2010,(22):86-88
    [21] Chiang S T, Tsai C M, Lee A C. Analysis of cutting forces in ball-end milling[J]. Journal of Materials Processing Technology, 1995,47(3-4):231-249
    [22] Wang Q D, Liu Z Q,,ang A M, et al. Milling force predicting modelling and numerical simulation for helical tooth cylindrical milling cutters[J]. Tool Engineering, 2011,45(3):17-22 (in Chinese)
    [23] Liu Q, Li Z Q. Simulation and optimization of CNC milling process-modeling, algorithms and application[M]. Beijing: Aviation Industry Press, 2011 (in Chinese)
    [24] 万敏,张卫红.铣削过程中误差预测与补偿技术研究进展[J].航空学报,2008,29(5):1340-1349
    [25] Yang Y, Ke Y L, Dong H Y. Finite element simulation of high-speed cutting[J]. Acta Aeronautica et Astronautica Sinica, 2006,27(3):531-535 (in Chinese)
    [26] 戚厚军,张大卫,蔡玉俊,等.低刚度铣削工艺系统的弹性铣削力建模方法[J].天津大学学报,2010,43(2):143-148
    [27] Cheng Q L, Ke Y L, Dong H Y. Numerical simulation study on milling force for aerospace aluminum alloy[J]. Acta Aeronautica et Astronautica Sinica, 2006,27(4):724-727 (in Chinese)
    [28] Saffar R J, Razfar M R, Zarei O, et al. Simulation of three-dimension cutting force and tool deflection in the end milling operation based on finite element method[J]. Simulation Modelling Practice and Theory, 2008,16(10):1677-1688
    [29] Wan M, Zhang W H, Qin G H, et al. Strategies for error prediction and error control in peripheral milling of thin-walled workpiece[J]. International Journal of Machine Tools and Manufacture, 2008,48(12-13):1366-1374
    [30] Yang Y, Li C H, Sun J. Three-dimensional numerical simulation of cutting force during milling of titanium alloy Ti6Al4V[J]. Journal of Basic Science and Engineering, 2010,18(3):493-502 (in Chinese)
    [31] Dotcheva M, Millward H, Lewis A. The evaluation of cutting-force coefficients using surface error measurements[J]. Journal of Materials Processing Technology, 2008,196(1-3):42-51
    [32] Liu Z Q, Zhang K G. Sensitivity analysis of Johnson-Cook material constants on adiabatic shear[J]. Acta Aeronautica et Astronautica Sinica, 2011,32(11):2140-2146 (in Chinese)
    [33] Lamikiz A, López de Lacalle L N, Sanchez J A, et al. Cutting force estimation in sculptured surface milling[J]. International Journal of Machine Tools and Manufacture, 2004,44(14):1511-1526
    [34] Liu Z Q, Wu J H, Shi Z Y, et al. State-of-the-art of constitutive equations in metal cutting operations[J]. Tool Engineering, 2008,42(3):3-9 (in Chinese)
    [35] Abdullah R R. Hybrid deflection prediction for machining thin-wall titanium alloy aerospace component[D]. Victoria: Royal Melbourne Institute of Technology University, 2011
    [36] Tang Z T, Liu Z Q, Ai X, et al. A study of thermo-elastic-plastic large-deformation finite element theory and key techniques of metal cutting simulation[J]. China Mechanical Engineering, 2007,18(6):746-751 (in Chinese)
    [37] Arnaud L, Gonzalo O, Seguy S, et al. Simulation of low rigidity part machining applied to thin-walled structures[J]. The International Journal of Advanced Manufacturing Technology, 2011,54(5-8):479-488
    [38] Dong F, Germain G, Lebrun J L, et al. Identification of Johnson-Cook constitutive model by finite element analysis[J]. Journal of Shanghai Jiaotong University, 2011,45(11):1657-1660,1667 (in Chinese)
    [39] Altintaş Y, Lee P. A general mechanics and dynamics model for helical end mills[J]. CIRP Annals-Manufacturing Technology, 1996,45(1):59-64
    [40] Chen G, Chen Z F, Tao J L, et al. Study on plastic constitutive relationship parameters of TC4 titanium[J]. Journal of Experimental Mechanics, 2005,20(4):605-609 (in Chinese)
    [41] Albrecht P. New developments in the theory of the metal-cutting process: Part I-the ploughing process in metal cutting[J]. Journal of Manufacturing Science and Engineering, 1960,82(4):348-357
    [42] Albrecht P. New development in the theory of the metal-cutting process: Part II-the theory of chip formation[J]. Journal of Manufacturing Science and Engineering, 1961,83(4):557-568
    [43] Hua Y Z, Guan L W, Liu X J, et al. Research and revise on constitutive equation of 7050-T7451 aluminum alloy in high strain rate and high temperature condition[J]. Journal of Materials Engineering, 2012,(12):7-13 (in Chinese)
    [44] Altintas Y, Engin S. Generalized modeling of mechanics and dynamics of milling cutters[J]. CIRP Annals-Manufacturing Technology, 2001,50(1):25-30
    [45] Xia L L, Yuan J T, Wang Z H, et al. Simulation and test research of milling force based on software DEFORM-3D[J]. Machinery Design and Manufacture, 2013,(4):85-87(in Chinese)
    [46] Liu Y C, Lin Q, Pang J Y, et al. Finite element analysis for effects of cutting parameters on cutting force and cutting temperature during end milling of Ti6Al4V[J]. Tool Engineering, 2012,46(10):3-6 (in Chinese)
    [47] 刘显波,龙新华,孟光,等.基于频域多目标优化的铣削力系数及偏心参数识别[J].机械工程学报,2011,47(7):185-190
    [48] Lin Q, Liu Z Q, Cao C M, et al. Optimization of tool geometries of coated tungsten carbide flat end mill for machining Ti-6Al-4V through FEM simulation[J]. Tool Engineering, 2011,45(10):7-11 (in Chinese)
    [49] Wu B H, Yan X, Luo M, et al. Cutting force prediction for circular end milling process[J]. Chinese Journal of Aeronautics, 2013,26(4):1057-1063
    [50] 李英松.基于傅里叶级数的铣削力建模及实验研究[D].大连:大连理工大学, 2009
    [51] Kline W A, Devor R E, Lindberg J R. The prediction of cutting forces in end milling with application to cornering cuts[J]. International Journal of Machine Tool Design and Research, 1982,22(1):7-22
    [52] Izamshah R, Mo J, Ding S. Task automation for modelling deflection prediction on machining thin-wall part with CATIA V5[J]. Information Engineering Research Institute, 2011,1(2): 276-279
    [53] Gonzalo O, Beristain J, Jauregi H, et al. A method for the identification of the specific force coefficients for mechanistic milling simulation[J]. International Journal of Machine Tools and Manufacture, 2010,50(9):765-774
    [54] Gradiek J, Kalveram M, Weinert K. Mechanistic identification of specific force coefficients for a general end mill[J]. International Journal of Machine Tools and Manufacture, 2004,44(4):401-414
    [55] Lamikiz A, López de Lacalle L N, Sánchez J A, et al. Calculation of the specific cutting coefficients and geometrical aspects in sculptured surface machining[J]. Machining Science and Technology, 2005,9(3):411-436
    [56] Budak E, Altintas Y, Armarego E J A. Prediction of milling force coefficients from orthogonal cutting data[J]. Journal of Engineering for Industry, 1996,118(2):216-224
    [57] Yoon M C, Kim Y G. Cutting dynamic force modelling of endmilling operation[J]. Journal of Materials Processing Technology, 2004,155-156:1383-1389
    [58] Lee P, Altintaş Y. Prediction of ball-end milling forces from orthogonal cutting data[J]. International Journal of Machine Tools and Manufacture, 1996,36(9):1059-1072
    [59] Budak E, Altintas Y. Modeling and avoidance of static form errors in peripheral milling of plates[J]. International Journal of Machine Tools and Manufacture, 1995,35(3):459-476
    [60] 王启东,刘战强,汤爱民,等.平头螺旋刃立铣刀切削力预报模型的建立与数值仿真 (一)——刀具几何参数对铣削力的影响[J].工具技术,2011,45(3):17-22
    [61] 刘强,李忠群.数控铣削加工过程仿真与优化-建模,算法与工程应用[M].北京:航空工业出版社,2011
    [62] Pantalé O, Bacaria J L, Dalverny O, et al. 2D and 3D numerical models of metal cutting with damage effects[J]. Computer Methods in Applied Mechanics and Engineering, 2004,193(39-41):4383-4399
    [63] Hu F W, Li D L. Modelling and simulation of milling forces using an arbitrary Lagrangian—Eulerian finite element method and support vector regression[J]. Journal of Optimization Theory and Applications, 2012,153(2):461-484
    [64] Yücesan G, Altintaş Y. Improved modelling of cutting force coefficients in peripheral milling[J]. International Journal of Machine Tools and Manufacture, 1994,34(4):473-487
    [65] 杨勇,柯映林,董辉跃.高速切削有限元模拟技术研究[J].航空学报,2006,27(3):531-535
    [66] Wang B S, Zuo J M, Wang M L, et al. Prediction of milling force based on numerical simulation of oblique cutting[J]. Materials and Manufacturing Processes, 2012,27(10):1011-1016
    [67] 成群林,柯映林,董辉跃.航空铝合金铣削加工中切削力的数值模拟研究[J].航空学报,2006,27(4):724-727
    [68] 杨勇,李长河,孙杰.钛合金Ti6Al4V铣削加工中切削力的三维数值模拟[J].应用基础与工程科学学报,2010,18(3):493-502
    [69] Childs T H C. Material property needs in modeling metal machining[J]. Machining Science and Technology, 1998,2(2):303-316
    [70] Rao B, Dandekar C R, Shin Y C. An experimental and numerical study on the face milling of Ti-6Al-4V alloy: tool performance and surface integrity[J]. Journal of Materials Processing Technology, 2011,211(2):294-304
    [71] 刘战强,张克国.J-C本构参数对绝热剪切影响的敏感性分析[J].航空学报,2011,32(11):2140-2146
    [72] 刘战强,吴继华,史振宇,等.金属切削变形本构方程的研究[J].工具技术,2008,42(3):3-9
    [73] 唐志涛,刘战强,艾兴,付等.金属切削加工热弹塑性大变形有限元理论及关键技术研究[J].中国机械工程,2007,18(6):746-751
    [74] 董菲,Germain G,Lebrun J L,等.有限元分析法确定Johson-Cook本构方程材料参数[J].上海交通大学学报,2011,45(11):1657-1660,1667
    [75] Özel T, Zeren E. Determination of work material flow stress and friction for FEA of machining using orthogonal cutting tests[J]. Journal of Materials Processing Technology, 2004,153-154:1019-1025
    [76] Lee W S, Lin C F. High-temperature deformation behaviour of Ti6Al4V alloy evaluated by high strain-rate compression tests[J]. Journal of Materials Processing Technology, 1998,75(1-3):127-136
    [77] Meyer H W, Kleponis D S. Modeling the high strain rate behavior of titanium undergoing ballistic impact and penetration[J]. International Journal of Impact Engineering, 2001,26(1-10):509-521
    [78] Meyer H W Jr, Kleponis D S. An analysis of parameters for the Johnson-Cook strength model for 2-in-thick rolled homogeneous armor[R]. Army Research Lab Aberdeen Proving Ground MD, 2001
    [79] Dumitrescu M, Elbestawi M, El-Wardany T. Mist coolant applications in high speed machining of advanced materials metal cutting and high speed machining[M]. Kluwer Academic/Plenum Publishers, 2002:329-339
    [80] 陈刚,陈忠富,陶俊林,伟等.TC4动态力学性能研究[J].实验力学,2005,20(4):605-609
    [81] Jaspers S P F C, Dautzenberg J H. Material behaviour in conditions similar to metal cutting: flow stress in the primary shear zone[J]. Journal of Materials Processing Technology, 2002,122(2-3):322-330.
    [82] Hamann J C, Grolleau V, Le Maitre F. Machinability improvement of steels at high cutting speeds—study of tool/work material interaction[J]. CIRP Annals-Manufacturing Technology, 1996,45(1):87-92
    [83] Mitrofanov A V, Babitsky V I, Silberschmidt V V. Finite element analysis of ultrasonically assisted turning of Inconel 718[J]. Journal of Materials Processing Technology, 2004,153-154:233-239
    [84] 滑勇之,关立文,刘辛军,等.铝合金7050-T7451高温高应变率本构方程及修正[J].材料工程,2012,(12):7-13
    [85] Guo Y B. An integral method to determine the mechanical behavior of materials in metal cutting[J]. Journal of Materials Processing Technology, 2003,142(1):72-81
    [86] Limido J, Espinosa C, Salaün M, et al. SPH method applied to high speed cutting modelling[J]. International Journal of Mechanical Sciences, 2007,49(7):898-908
    [87] Adibi-Sedeh A H, Madhavan V, Bahr B. Extension of Oxley's analysis of machining to use different material models[J]. Journal of Manufacturing Science and Engineering, 2003,125(4):656-666
    [88] Özel T, Karpat Y. Identification of constitutive material model parameters for high-strain rate metal cutting conditions using evolutionary computational algorithms[J]. Materials and Manufacturing Processes, 2007,22(5):659-667
    [89] Shatla M, Kerk C, Altan T. Process modeling in machining. Part I: determination of flow stress data[J]. International Journal of Machine Tools and Manufacture, 2001,41(10):1511-1534
    [90] Shao F, Liu Z Q, Wan Y, et al. Finite element simulation of machining of Ti-6Al-4V alloy with thermodynamical constitutive equation[J]. The International Journal of Advanced Manufacturing Technology, 2010,49(5-8):431-439
    [91] Zorev N N. Inter-relationship between shear processes occurring along tool face and shear plane in metal cutting[J]. International Research in Production Engineering, 1963:42-49
    [92] Shirakashi T, Usui E. Simulation analysis of orthogonal metal cutting mechanism[C]//Proceedings of the First International Conference on Production Engineering, Tokyo, 1974:535-540
    [93] Vaz M Jr. On the numerical simulation of machining processes[J]. Journal of the Brazilian Society of Mechanical Sciences, 2000,22(2):179-188
    [94] Yang X P, Liu C R. A new stress-based model of friction behavior in machining and its significant impact on residual stresses computed by finite element method[J]. International Journal of Mechanical Sciences, 2002,44(4):703-723
    [95] Shih A J. Finite element simulation of orthogonal metal cutting[J]. Journal of Manufacturing Science and Engineering, 1995,117(1):84-93
    [96] Iwata K, Osakada K, Terasaka Y. Process modeling of orthogonal cutting by the rigid-plastic finite element method[J]. Journal of Engineering Materials and Technology, 1984,106(2):132-138
    [97] Lin Z C, Lai W L, Lin H Y, et al. The study of ultra-precision machining and residual stress for NiP alloy with different cutting speeds and depth of cut[J]. Journal of Materials Processing Technology, 2000,97(1-3):200-210
    [98] Zain A M, Haron H, Sharif S. Prediction of surface roughness in the end milling machining using artificial neural network[J]. Expert Systems with Applications, 2010,37(2):1755-1768
    [99] Kurt A. Modelling of the cutting tool stresses in machining of Inconel 718 using artificial neural networks[J]. Expert Systems with Applications, 2009,36(6):9645-9657
    [100] Umbrello D, Ambrogio G, Filice L, et al. A hybrid finite element method-artificial neural network approach for predicting residual stresses and the optimal cutting conditions during hard turning of AISI 52100 bearing steel[J]. Materials and Design, 2008,29(4):873-883
    [101] Karnik S R, Gaitonde V N, Rubio J C, et al. Delamination analysis in high speed drilling of carbon fiber reinforced plastics (CFRP) using artificial neural network model[J]. Materials and Design, 2008,29(9):1768-1776
    [102] Ezugwu E O, Arthur S J, Hines E L. Tool-wear prediction using artificial neural networks[J]. Journal of Materials Processing Technology, 1995,49(3-4):255-264
    [103] Ezugwu E O, Fadare D A, Bonney J, et al. Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network[J]. International Journal of Machine Tools and Manufacture, 2005,45(12-13):1375-1385
    [104] Monostori L, Viharos Z J, Markos S. Satisfying various requirements in different levels and stages of machining using one general ANN-based process model[J]. Journal of Materials Processing Technology, 2000,107(1-3):228-235
    [105] Zuperl U, Cus F, Mursec B, et al. A generalized neural network model of ball-end milling force system[J]. Journal of Materials Processing Technology, 2006,175(1-3):98-108
    [106] Szecsi T. Cutting force modeling using artificial neural networks[J]. Journal of Materials Processing Technology, 1999,92-93:344-349
    [107] Ratchev S, Govender E, Nikov S, et al. Force and deflection modelling in milling of low-rigidity complex parts[J]. Journal of Materials Processing Technology, 2003,143-144:796-801
    [108] Aykut Ş, Gölcü M, Semiz S, et al. Modeling of cutting forces as function of cutting parameters for face milling of satellite 6 using an artificial neural network[J]. Journal of Materials Processing Technology, 2007,190(1-3):199-203
    [109] Zuperl U, Cus F. Tool cutting force modeling in ball-end milling using multilevel perceptron[J]. Journal of Materials Processing Technology, 2004,153-154:268-275
    [110] Cus F, Zuperl U, Milfelner M. Dynamic neural network approach for tool cutting force modelling of end milling operations[J]. International Journal of General Systems, 2006,35(5):603-618
    [111] Zuperl U, Cus F, Reibenschuh M. Neural control strategy of constant cutting force system in end milling[J]. Robotics and Computer-Integrated Manufacturing, 2011,27(3):485-493
    [112] Nalbant M, Altin A, Gkkaya H. The effect of cutting speed and cutting tool geometry on machinability properties of nickel-base Inconel 718 super alloys[J]. Materials and Design, 2007,28(4):1334-1338
    [113] 夏亮亮,袁军堂,汪振华,光.基于DEFORM-3D的铝合金铣削力仿真与试验研究[J].机械设计与制造,2013,(4):85-87
    [114] Pal P P, Dr.Prabhu R V, Sakthimurugan K. Surface error compensation in HSM of thin wall structures[J]. International Journal of Engineering Science Invention, 2013,2(2):2319-6734
    [115] 刘迎春,林琪,庞继有,等.切削用量对立铣加工钛合金Ti6Al4V切削力和切削温度影响规律的有限元仿真研究[J].工具技术,2012,46(10):3-6
    [116] Saglam H, Yaldiz S, Unsacar F. The effect of tool geometry and cutting speed on main cutting force and tool tip temperature[J]. Materials and Design, 2007,28(1):101-111
    [117] Saglam H, Unsacar F, Yaldiz S. Investigation of the effect of rake angle and approaching angle on main cutting force and tool tip temperature[J]. International Journal of Machine Tools and Manufacture, 2006,46(2):132-141
    [118] Wyen C F, Wegener K. Influence of cutting edge radius on cutting forces in machining titanium[J]. CIRP Annals-Manufacturing Technology, 2010,59(1):93-96
    [119] Shih A J. Finite element analysis of the rake angle effects in orthogonal metal cutting[J]. International Journal of Mechanical Science, 1995,38(1):1-17
    [120] 林琪,刘战强,曹成铭,等.切削 Ti-6Al-4V 硬质合金涂层平头立铣刀的几何参数优化仿真研究[J].工具技术,2011,45(10):7-11
  • 加载中
计量
  • 文章访问数:  318
  • HTML全文浏览量:  46
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-21
  • 刊出日期:  2015-08-05

目录

    /

    返回文章
    返回